
Michael Emerman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4397855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolutionary Landscapes of Host-Virus Arms Races. Annual Review of Immunology, 2022, 40, 271-294.	21.8	24
2	HIV-1 Vif Gained Breadth in APOBEC3G Specificity after Cross-Species Transmission of Its Precursors. Journal of Virology, 2022, 96, JVI0207121.	3.4	2
3	Highly-potent, synthetic APOBEC3s restrict HIV-1 through deamination-independent mechanisms. PLoS Pathogens, 2021, 17, e1009523.	4.7	4
4	Divergence in Dimerization and Activity of Primate APOBEC3C. Journal of Molecular Biology, 2021, 433, 167306.	4.2	3
5	APOBEC3C Tandem Domain Proteins Create Super Restriction Factors against HIV-1. MBio, 2020, 11, .	4.1	5
6	A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583, 459-468.	27.8	3,542
7	TRIM34 restricts HIV-1 and SIV capsids in a TRIM5α-dependent manner. PLoS Pathogens, 2020, 16, e1008507.	4.7	39
8	Polymorphisms in Human APOBEC3H Differentially Regulate Ubiquitination and Antiviral Activity. Viruses, 2020, 12, 378.	3.3	16
9	Retrocopying expands the functional repertoire of APOBEC3 antiviral proteins in primates. ELife, 2020, 9, .	6.0	50
10	Mutational resilience of antiviral restriction favors primate TRIM5 $\hat{I}\pm$ in host-virus evolutionary arms races. ELife, 2020, 9, .	6.0	20
11	TRIM34 restricts HIV-1 and SIV capsids in a TRIM5α-dependent manner. , 2020, 16, e1008507.		0
12	TRIM34 restricts HIV-1 and SIV capsids in a TRIM5α-dependent manner. , 2020, 16, e1008507.		0
13	TRIM34 restricts HIV-1 and SIV capsids in a TRIM5α-dependent manner. , 2020, 16, e1008507.		0
14	Macaque interferon-induced transmembrane proteins limit replication of SHIV strains in an Envelope-dependent manner. PLoS Pathogens, 2019, 15, e1007925.	4.7	11
15	Combinatorial mutagenesis of rapidly evolving residues yields super-restrictor antiviral proteins. PLoS Biology, 2019, 17, e3000181.	5.6	13
16	Structural Basis for a Species-Specific Determinant of an SIV Vif Protein toward Hominid APOBEC3G Antagonism. Cell Host and Microbe, 2019, 26, 739-747.e4.	11.0	13
17	A CRISPR screen for factors regulating SAMHD1 degradation identifies IFITMs as potent inhibitors of lentiviral particle delivery. Retrovirology, 2018, 15, 26.	2.0	24
18	Recurrent Loss of APOBEC3H Activity during Primate Evolution. Journal of Virology, 2018, 92, .	3.4	10

#	Article	IF	CITATIONS
19	A virus-packageable CRISPR screen identifies host factors mediating interferon inhibition of HIV. ELife, 2018, 7, .	6.0	115
20	Cytidine deaminase efficiency of the lentiviral viral restriction factor APOBEC3C correlates with dimerization. Nucleic Acids Research, 2017, 45, 3378-3394.	14.5	38
21	A Single Nucleotide Polymorphism in Human APOBEC3C Enhances Restriction of Lentiviruses. PLoS Pathogens, 2016, 12, e1005865.	4.7	50
22	Conservation and Innovation of APOBEC3A Restriction Functions during Primate Evolution. Molecular Biology and Evolution, 2016, 33, 1889-1901.	8.9	25
23	Activation of the DNA Damage Response Is a Conserved Function of HIV-1 and HIV-2 Vpr That Is Independent of SLX4 Recruitment. MBio, 2016, 7, .	4.1	36
24	The Role of the Antiviral APOBEC3 Gene Family in Protecting Chimpanzees against Lentiviruses from Monkeys. PLoS Pathogens, 2015, 11, e1005149.	4.7	47
25	Evolutionary Analyses Suggest a Function of MxB Immunity Proteins Beyond Lentivirus Restriction. PLoS Pathogens, 2015, 11, e1005304.	4.7	48
26	Natural Polymorphisms in Human APOBEC3H and HIV-1 Vif Combine in Primary T Lymphocytes to Affect Viral G-to-A Mutation Levels and Infectivity. PLoS Genetics, 2014, 10, e1004761.	3.5	92
27	Gene Loss and Adaptation to Hominids Underlie the Ancient Origin of HIV-1. Cell Host and Microbe, 2013, 14, 85-92.	11.0	93
28	An evolutionary perspective on the broad antiviral specificity of MxA. Current Opinion in Microbiology, 2013, 16, 493-499.	5.1	71
29	Host gene evolution traces the evolutionary history of ancient primate lentiviruses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120496.	4.0	68
30	Convergence and Divergence in the Evolution of the APOBEC3G-Vif Interaction Reveal Ancient Origins of Simian Immunodeficiency Viruses. PLoS Pathogens, 2013, 9, e1003135.	4.7	108
31	Evolutionary Toggling of Vpx/Vpr Specificity Results in Divergent Recognition of the Restriction Factor SAMHD1. PLoS Pathogens, 2013, 9, e1003496.	4.7	86
32	Antagonism of SAMHD1 is actively maintained in natural infections of simian immunodeficiency virus. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 21136-21141.	7.1	31
33	Evolution-Guided Identification of Antiviral Specificity Determinants in the Broadly Acting Interferon-Induced Innate Immunity Factor MxA. Cell Host and Microbe, 2012, 12, 598-604.	11.0	144
34	Evolutionary conflicts between viruses and restriction factors shape immunity. Nature Reviews Immunology, 2012, 12, 687-695.	22.7	309
35	The Host Restriction Factor APOBEC3G and Retroviral Vif Protein Coevolve due to Ongoing Genetic Conflict. Cell Host and Microbe, 2012, 11, 91-98.	11.0	101
36	The Ability of Primate Lentiviruses to Degrade the Monocyte Restriction Factor SAMHD1 Preceded the Birth of the Viral Accessory Protein Vpx. Cell Host and Microbe, 2012, 11, 194-204.	11.0	245

#	Article	IF	CITATIONS
37	Human Trim5α has additional activities that are uncoupled from retroviral capsid recognition. Virology, 2011, 409, 113-120.	2.4	59
38	The Breadth of Antiviral Activity of Apobec3DE in Chimpanzees Has Been Driven by Positive Selection. Journal of Virology, 2011, 85, 11361-11371.	3.4	52
39	Polymorphism in Human APOBEC3H Affects a Phenotype Dominant for Subcellular Localization and Antiviral Activity. Journal of Virology, 2011, 85, 8197-8207.	3.4	60
40	Ancient Adaptive Evolution of Tetherin Shaped the Functions of Vpu and Nef in Human Immunodeficiency Virus and Primate Lentiviruses. Journal of Virology, 2010, 84, 7124-7134.	3.4	135
41	The Range of Human APOBEC3H Sensitivity to Lentiviral Vif Proteins. Journal of Virology, 2010, 84, 88-95.	3.4	66
42	Paleovirology—Modern Consequences of Ancient Viruses. PLoS Biology, 2010, 8, e1000301.	5.6	143
43	Guidelines for Naming Nonprimate APOBEC3 Genes and Proteins. Journal of Virology, 2009, 83, 494-497.	3.4	217
44	An expanded clade of rodent Trim5 genes. Virology, 2009, 385, 473-483.	2.4	68
45	HIV-1 Accessory Proteins—Ensuring Viral Survival in a Hostile Environment. Cell Host and Microbe, 2008, 3, 388-398.	11.0	481
46	Antiretroelement Activity of APOBEC3H Was Lost Twice in Recent Human Evolution. Cell Host and Microbe, 2008, 4, 249-259.	11.0	187
47	Positive Selection and Increased Antiviral Activity Associated with the PARP-Containing Isoform of Human Zinc-Finger Antiviral Protein. PLoS Genetics, 2008, 4, e21.	3.5	171
48	Discordant Evolution of the Adjacent Antiretroviral Genes TRIM22 and TRIM5 in Mammals. PLoS Pathogens, 2007, 3, e197.	4.7	165
49	Adaptive Evolution and Antiviral Activity of the Conserved Mammalian Cytidine Deaminase APOBEC3H. Journal of Virology, 2006, 80, 3853-3862.	3.4	177
50	How TRIM5Â defends against retroviral invasions. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5249-5250.	7.1	11
51	Positive selection of primate TRIM5Â identifies a critical species-specific retroviral restriction domain. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2832-2837.	7.1	634
52	Capsid Is a Dominant Determinant of Retrovirus Infectivity in Nondividing Cells. Journal of Virology, 2004, 78, 5670-5678.	3.4	272
53	Ancient Adaptive Evolution of the Primate Antiviral DNA-Editing Enzyme APOBEC3G. PLoS Biology, 2004, 2, e275.	5.6	426
54	Evidence for a cytopathogenicity determinant in HIV-1 Vpr. Proceedings of the National Academy of Sciences of the United States of America. 2002, 99, 9503-9508.	7.1	96

#	Article	IF	CITATIONS
55	Learning from lentiviruses. Nature Genetics, 2000, 24, 8-9.	21.4	21
56	An In Vitro Rapid-Turnover Assay for Human Immunodeficiency Virus Type 1 Replication Selects for Cell-to-Cell Spread of Virus. Journal of Virology, 2000, 74, 10882-10891.	3.4	98
57	Changes in growth properties on passage in tissue culture of viruses derived from infectious molecular clones of HIV-1LAI, HIV-1MAL, and HIV-1ELI. Virology, 1991, 185, 661-672.	2.4	430