Juewen Liu, å^~çæ-

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/439779/publications.pdf

Version: 2024-02-01

4622 2962 38,085 462 96 176 citations h-index g-index papers 478 478 478 27461 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Functional Nucleic Acid Sensors. Chemical Reviews, 2009, 109, 1948-1998.	23.0	1,988
2	A Colorimetric Lead Biosensor Using DNAzyme-Directed Assembly of Gold Nanoparticles. Journal of the American Chemical Society, 2003, 125, 6642-6643.	6.6	1,287
3	Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nature Protocols, 2006, 1, 246-252.	5.5	1,002
4	The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nature Materials, 2011, 10, 389-397.	13.3	933
5	Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angewandte Chemie - International Edition, 2006, 45, 90-94.	7.2	865
6	Metal Sensing by DNA. Chemical Reviews, 2017, 117, 8272-8325.	23.0	713
7	Accelerated Color Change of Gold Nanoparticles Assembled by DNAzymes for Simple and Fast Colorimetric Pb2+Detection. Journal of the American Chemical Society, 2004, 126, 12298-12305.	6.6	617
8	A DNAzyme Catalytic Beacon Sensor for Paramagnetic Cu ²⁺ lons in Aqueous Solution with High Sensitivity and Selectivity. Journal of the American Chemical Society, 2007, 129, 9838-9839.	6.6	601
9	Rational Design of "Turnâ€On―Allosteric DNAzyme Catalytic Beacons for Aqueous Mercury Ions with Ultrahigh Sensitivity and Selectivity. Angewandte Chemie - International Edition, 2007, 46, 7587-7590.	7.2	549
10	Molecular Imprinting on Inorganic Nanozymes for Hundred-fold Enzyme Specificity. Journal of the American Chemical Society, 2017, 139, 5412-5419.	6.6	522
11	Adsorption and Desorption of DNA on Graphene Oxide Studied by Fluorescently Labeled Oligonucleotides. Langmuir, 2011, 27, 2731-2738.	1.6	491
12	Instantaneous and Quantitative Functionalization of Gold Nanoparticles with Thiolated DNA Using a pH-Assisted and Surfactant-Free Route. Journal of the American Chemical Society, 2012, 134, 7266-7269.	6.6	477
13	A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2056-2061.	3.3	474
14	Highly Sensitive and Selective Colorimetric Sensors for Uranyl (UO ₂ ²⁺): Development and Comparison of Labeled and Label-Free DNAzyme-Gold Nanoparticle Systems. Journal of the American Chemical Society, 2008, 130, 14217-14226.	6.6	441
15	Aptamer-based biosensors for biomedical diagnostics. Analyst, The, 2014, 139, 2627.	1.7	435
16	Regenerable DNA-Functionalized Hydrogels for Ultrasensitive, Instrument-Free Mercury(II) Detection and Removal in Water. Journal of the American Chemical Society, 2010, 132, 12668-12673.	6.6	429
17	Surface modification of nanozymes. Nano Research, 2017, 10, 1125-1148.	5.8	406
18	Regenerable and stable sp2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium. Nature Communications, 2020, 11, 436.	5.8	383

#	Article	IF	Citations
19	Hydrogen Peroxide Displacing DNA from Nanoceria: Mechanism and Detection of Glucose in Serum. Journal of the American Chemical Society, 2015, 137, 1290-1295.	6.6	370
20	Adsorption of DNA onto gold nanoparticles and graphene oxide: surface science and applications. Physical Chemistry Chemical Physics, 2012, 14, 10485.	1.3	342
21	Adenosine-Dependent Assembly of Aptazyme-Functionalized Gold Nanoparticles and Its Application as a Colorimetric Biosensor. Analytical Chemistry, 2004, 76, 1627-1632.	3.2	337
22	Nanozymes: A clear definition with fuzzy edges. Nano Today, 2021, 40, 101269.	6.2	332
23	Porous Nanoparticle Supported Lipid Bilayers (Protocells) as Delivery Vehicles. Journal of the American Chemical Society, 2009, 131, 1354-1355.	6.6	323
24	Multicopper Laccase Mimicking Nanozymes with Nucleotides as Ligands. ACS Applied Materials & lnterfaces, 2017, 9, 1352-1360.	4.0	319
25	A Simple and Sensitive "Dipstick―Test in Serum Based on Lateral Flow Separation of Aptamer-Linked Nanostructures. Angewandte Chemie - International Edition, 2006, 45, 7955-7959.	7.2	313
26	Freezing Directed Construction of Bio/Nano Interfaces: Reagentless Conjugation, Denser Spherical Nucleic Acids, and Better Nanoflares. Journal of the American Chemical Society, 2017, 139, 9471-9474.	6.6	303
27	Stimuli-Responsive Disassembly of Nanoparticle Aggregates for Light-Up Colorimetric Sensing. Journal of the American Chemical Society, 2005, 127, 12677-12683.	6.6	292
28	Filling in the Gaps between Nanozymes and Enzymes: Challenges and Opportunities. Bioconjugate Chemistry, 2017, 28, 2903-2909.	1.8	290
29	Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. Current Opinion in Biotechnology, 2006, 17, 580-588.	3.3	283
30	Surface Science of DNA Adsorption onto Citrate-Capped Gold Nanoparticles. Langmuir, 2012, 28, 3896-3902.	1.6	260
31	Quantum Dot Encoding of Aptamer-Linked Nanostructures for One-Pot Simultaneous Detection of Multiple Analytes. Analytical Chemistry, 2007, 79, 4120-4125.	3.2	253
32	Electrostatically Mediated Liposome Fusion and Lipid Exchange with a Nanoparticle-Supported Bilayer for Control of Surface Charge, Drug Containment, and Delivery. Journal of the American Chemical Society, 2009, 131, 7567-7569.	6.6	250
33	Nanozyme for tumor therapy: Surface modification matters. Exploration, 2021, 1, 75-89.	5.4	250
34	Smart Nanomaterials Inspired by Biology: Dynamic Assembly of Error-Free Nanomaterials in Response to Multiple Chemical and Biological Stimuli. Accounts of Chemical Research, 2007, 40, 315-323.	7.6	233
35	Colorimetric Cu2+ detection with a ligation DNAzyme and nanoparticles. Chemical Communications, 2007, , 4872.	2.2	224
36	DNA adsorbed on graphene and graphene oxide: Fundamental interactions, desorption and applications. Current Opinion in Colloid and Interface Science, 2016, 26, 41-49.	3.4	224

#	Article	IF	CITATIONS
37	Boosting the oxidase mimicking activity of nanoceria by fluoride capping: rivaling protein enzymes and ultrasensitive F ^{â^²} detection. Nanoscale, 2016, 8, 13562-13567.	2.8	209
38	Mechanisms of DNA Sensing on Graphene Oxide. Analytical Chemistry, 2013, 85, 7987-7993.	3.2	201
39	Blue emitting gold nanoclusters templated by poly-cytosine DNA at low pH and poly-adenine DNA at neutral pH. Chemical Communications, 2012, 48, 6845.	2.2	199
40	Phosphorescent Carbon Dots for Highly Efficient Oxygen Photosensitization and as Photo-oxidative Nanozymes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 40808-40814.	4.0	192
41	Theranostic DNAzymes. Theranostics, 2017, 7, 1010-1025.	4.6	190
42	Ultrahigh Nanoparticle Stability against Salt, pH, and Solvent with Retained Surface Accessibility via Depletion Stabilization. Journal of the American Chemical Society, 2012, 134, 9910-9913.	6.6	189
43	Improving Fluorescent DNAzyme Biosensors by Combining Inter- and Intramolecular Quenchers. Analytical Chemistry, 2003, 75, 6666-6672.	3.2	187
44	Accelerating peroxidase mimicking nanozymes using DNA. Nanoscale, 2015, 7, 13831-13835.	2.8	186
45	Attaching DNA to Nanoceria: Regulating Oxidase Activity and Fluorescence Quenching. ACS Applied Materials & Damp; Interfaces, 2013, 5, 6820-6825.	4.0	183
46	DNA-stabilized, fluorescent, metal nanoclusters for biosensor development. TrAC - Trends in Analytical Chemistry, 2014, 58, 99-111.	5 . 8	181
47	Comparison of MoS ₂ , WS ₂ , and Graphene Oxide for DNA Adsorption and Sensing. Langmuir, 2017, 33, 630-637.	1.6	179
48	A modular microfluidic architecture for integrated biochemical analysis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9745-9750.	3.3	177
49	Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle–DNAzyme conjugates. Chemical Communications, 2010, 46, 1416.	2.2	177
50	Methods for preparing DNA-functionalized gold nanoparticles, a key reagent of bioanalytical chemistry. Analytical Methods, 2017, 9, 2633-2643.	1.3	173
51	Smart Nanomaterials Responsive to Multiple Chemical Stimuli with Controllable Cooperativity. Advanced Materials, 2006, 18, 1667-1671.	11.1	171
52	Oligonucleotide-functionalized hydrogels as stimuli responsive materials and biosensors. Soft Matter, 2011, 7, 6757.	1.2	170
53	A Silver DNAzyme. Analytical Chemistry, 2016, 88, 4014-4020.	3. 2	163
54	Manganese as a Catalytic Mediator for Photo-oxidation and Breaking the pH Limitation of Nanozymes. Nano Letters, 2019, 19, 3214-3220.	4. 5	161

#	Article	IF	Citations
55	Colorimetric Biosensors Based on DNAzyme-Assembled Gold Nanoparticles. Journal of Fluorescence, 2004, 14, 343-354.	1.3	160
56	Intracellular Detection of ATP Using an Aptamer Beacon Covalently Linked to Graphene Oxide Resisting Nonspecific Probe Displacement. Analytical Chemistry, 2014, 86, 12229-12235.	3.2	160
57	Instantaneous Attachment of an Ultrahigh Density of Nonthiolated DNA to Gold Nanoparticles and Its Applications. Langmuir, 2012, 28, 17053-17060.	1.6	157
58	Metal-Dependent Global Folding and Activity of the 8-17 DNAzyme Studied by Fluorescence Resonance Energy Transfer. Journal of the American Chemical Society, 2007, 129, 6896-6902.	6.6	156
59	Molecular Beacon Lighting up on Graphene Oxide. Analytical Chemistry, 2012, 84, 4192-4198.	3.2	154
60	Interface-Driven Hybrid Materials Based on DNA-Functionalized Gold Nanoparticles. Matter, 2019, 1, 825-847.	5.0	147
61	Dual Enhancement of Gold Nanocluster Electrochemiluminescence: Electrocatalytic Excitation and Aggregationâ€Induced Emission. Angewandte Chemie - International Edition, 2020, 59, 9982-9985.	7.2	143
62	Co-immobilization of multiple enzymes by metal coordinated nucleotide hydrogel nanofibers: improved stability and an enzyme cascade for glucose detection. Nanoscale, 2016, 8, 6071-6078.	2.8	141
63	Biosensors and sensors for dopamine detection. View, 2021, 2, 20200102.	2.7	141
64	FRET Study of a Trifluorophore-Labeled DNAzyme. Journal of the American Chemical Society, 2002, 124, 15208-15216.	6.6	138
65	Optimization of a Pb2+-Directed Gold Nanoparticle/DNAzyme Assembly and Its Application as a Colorimetric Biosensor for Pb2+. Chemistry of Materials, 2004, 16, 3231-3238.	3.2	137
66	Dissecting metal ion–dependent folding and catalysis of a single DNAzyme. Nature Chemical Biology, 2007, 3, 763-768.	3.9	137
67	Rational evolution of Cd ²⁺ -specific DNAzymes with phosphorothioate modified cleavage junction and Cd ²⁺ sensing. Nucleic Acids Research, 2015, 43, 6125-6133.	6.5	136
68	Ultrasensitive DNAzyme Beacon for Lanthanides and Metal Speciation. Analytical Chemistry, 2014, 86, 1816-1821.	3.2	133
69	DNA adsorption by magnetic iron oxide nanoparticles and its application for arsenate detection. Chemical Communications, 2014, 50, 8568.	2.2	132
70	Polyâ€cytosine DNA as a Highâ€Affinity Ligand for Inorganic Nanomaterials. Angewandte Chemie - International Edition, 2017, 56, 6208-6212.	7.2	132
71	DNAâ€Lengthâ€Dependent Fluorescence Signaling on Graphene Oxide Surface. Small, 2012, 8, 977-983.	5.2	131
72	New insights into a classic aptamer: binding sites, cooperativity and more sensitive adenosine detection. Nucleic Acids Research, 2017, 45, 7593-7601.	6.5	131

#	Article	IF	CITATIONS
73	New highly sensitive and selective catalytic DNA biosensors for metal ions. Biosensors and Bioelectronics, 2003, 18, 529-540.	5.3	128
74	Preâ€oxidation of Gold Nanoclusters Results in a 66 % Anodic Electrochemiluminescence Yield and Drives Mechanistic Insights. Angewandte Chemie - International Edition, 2019, 58, 11691-11694.	7.2	128
75	Targeted liposomal drug delivery: a nanoscience and biophysical perspective. Nanoscale Horizons, 2021, 6, 78-94.	4.1	124
76	Miniaturized Lead Sensor Based on Lead-Specific DNAzyme in a Nanocapillary Interconnected Microfluidic Device. Environmental Science & Environmental &	4.6	123
77	Comparison of Graphene Oxide and Reduced Graphene Oxide for DNA Adsorption and Sensing. Langmuir, 2016, 32, 10776-10783.	1.6	123
78	DNA-Functionalized Monolithic Hydrogels and Gold Nanoparticles for Colorimetric DNA Detection. ACS Applied Materials & DNA Detection. 3594-3600.	4.0	120
79	Fluorescent sensors using DNA-functionalized graphene oxide. Analytical and Bioanalytical Chemistry, 2014, 406, 6885-6902.	1.9	119
80	Catalytic Nucleic Acids: Biochemistry, Chemical Biology, Biosensors, and Nanotechnology. IScience, 2020, 23, 100815.	1.9	117
81	Aptamer-Functionalized Hydrogel Microparticles for Fast Visual Detection of Mercury(II) and Adenosine. ACS Applied Materials & Samp; Interfaces, 2012, 4, 2228-2233.	4.0	116
82	Comprehensive Screen of Metal Oxide Nanoparticles for DNA Adsorption, Fluorescence Quenching, and Anion Discrimination. ACS Applied Materials & Samp; Interfaces, 2015, 7, 24833-24838.	4.0	116
83	Non-Base Pairing DNA Provides a New Dimension for Controlling Aptamer-Linked Nanoparticles and Sensors. Journal of the American Chemical Society, 2007, 129, 8634-8643.	6.6	113
84	Conjugation of antibodies and aptamers on nanozymes for developing biosensors. Biosensors and Bioelectronics, 2020, 168, 112537.	5.3	113
85	Light-activated nanozymes: catalytic mechanisms and applications. Nanoscale, 2020, 12, 2914-2923.	2.8	112
86	Dopamine and Melamine Binding to Gold Nanoparticles Dominates Their Aptamer-Based Label-Free Colorimetric Sensing. Analytical Chemistry, 2020, 92, 9370-9378.	3.2	111
87	Highly Active and Stable DNAzymeâ^'Carbon Nanotube Hybrids. Journal of the American Chemical Society, 2005, 127, 12200-12201.	6.6	108
88	Regenerable Carbohydrazide-Linked Fluorescent Covalent Organic Frameworks for Ultrasensitive Detection and Removal of Mercury. ACS Sustainable Chemistry and Engineering, 2020, 8, 445-451.	3.2	108
89	Bioorthogonal DNA Adsorption on Polydopamine Nanoparticles Mediated by Metal Coordination for Highly Robust Sensing in Serum and Living Cells. ACS Nano, 2018, 12, 9070-9080.	7.3	107
90	Dissociation and Degradation of Thiol-Modified DNA on Gold Nanoparticles in Aqueous and Organic Solvents. Langmuir, 2011, 27, 6132-6137.	1.6	105

#	Article	IF	CITATIONS
91	Iron oxide nanozyme catalyzed synthesis of fluorescent polydopamine for light-up Zn ²⁺ detection. Nanoscale, 2016, 8, 13620-13626.	2.8	103
92	Siteâ€Specific Control of Distances between Gold Nanoparticles Using Phosphorothioate Anchors on DNA and a Short Bifunctional Molecular Fastener. Angewandte Chemie - International Edition, 2007, 46, 9006-9010.	7.2	102
93	Sensing Parts-per-Trillion Cd ²⁺ , Hg ²⁺ , and Pb ²⁺ Collectively and Individually Using Phosphorothioate DNAzymes. Analytical Chemistry, 2014, 86, 5999-6005.	3.2	102
94	Self-healing metal-coordinated hydrogels using nucleotide ligands. Chemical Communications, 2015, 51, 15196-15199.	2.2	101
95	DNA stabilized silver nanoclusters for ratiometric and visual detection of Hg2+ and its immobilization in hydrogels. Biosensors and Bioelectronics, 2013, 48, 82-86.	5.3	98
96	A Glucoseâ€Powered Activatable Nanozyme Breaking pH and H ₂ O ₂ Limitations for Treating Diabetic Infections. Angewandte Chemie - International Edition, 2021, 60, 23534-23539.	7.2	96
97	Flow Cytometry-Assisted Detection of Adenosine in Serum with an Immobilized Aptamer Sensor. Analytical Chemistry, 2010, 82, 4020-4026.	3.2	94
98	Adsorption of DNA Oligonucleotides by Titanium Dioxide Nanoparticles. Langmuir, 2014, 30, 839-845.	1.6	94
99	An Ultrasensitive Light-up Cu ²⁺ Biosensor Using a New DNAzyme Cleaving a Phosphorothioate-Modified Substrate. Analytical Chemistry, 2016, 88, 3341-3347.	3.2	94
100	Bromide as a Robust Backfiller on Gold for Precise Control of DNA Conformation and High Stability of Spherical Nucleic Acids. Journal of the American Chemical Society, 2018, 140, 4499-4502.	6.6	91
101	Nanozyme Catalytic Turnover and Self-Limited Reactions. ACS Nano, 2021, 15, 15645-15655.	7.3	91
102	Fast pH-assisted functionalization of silver nanoparticles with monothiolated DNA. Chemical Communications, 2012, 48, 10114.	2.2	88
103	Interfacing Zwitterionic Liposomes with Inorganic Nanomaterials: Surface Forces, Membrane Integrity, and Applications. Langmuir, 2016, 32, 4393-4404.	1.6	88
104	Janus DNA orthogonal adsorption of graphene oxide and metal oxide nanoparticles enabling stable sensing in serum. Materials Horizons, 2018, 5, 65-69.	6.4	88
105	Nucleic Acids Analysis. Science China Chemistry, 2021, 64, 171-203.	4.2	88
106	Mesoporous silica-supported lipid bilayers (protocells) for DNA cargo delivery to the spinal cord. Journal of Controlled Release, 2013, 168, 209-224.	4.8	86
107	Biochemical Characterization of a Uranyl Ionâ€Specific DNAzyme. ChemBioChem, 2009, 10, 486-492.	1.3	84
108	Programmable Assembly of DNA-Functionalized Liposomes by DNA. ACS Nano, 2011, 5, 1304-1312.	7.3	84

#	Article	IF	CITATIONS
109	Characterization of glucose oxidation by gold nanoparticles using nanoceria. Journal of Colloid and Interface Science, 2014, 428, 78-83.	5.0	84
110	In Vitro Selection of a New Lanthanide-Dependent DNAzyme for Ratiometric Sensing Lanthanides. Analytical Chemistry, 2014, 86, 9993-9999.	3.2	82
111	Electrostatically Directed Visual Fluorescence Response of DNA-Functionalized Monolithic Hydrogels for Highly Sensitive Hg ²⁺ Detection. ACS Applied Materials & amp; Interfaces, 2011, 3, 733-739.	4.0	81
112	A DNAzyme requiring two different metal ions at two distinct sites. Nucleic Acids Research, 2016, 44, 354-363.	6.5	80
113	Highly active fluorogenic oxidase-mimicking NiO nanozymes. Chemical Communications, 2018, 54, 12519-12522.	2.2	80
114	Lanthanide-Boosted Singlet Oxygen from Diverse Photosensitizers along with Potent Photocatalytic Oxidation. ACS Nano, 2019, 13, 14152-14161.	7.3	80
115	The Arsenic-Binding Aptamer Cannot Bind Arsenic: Critical Evaluation of Aptamer Selection and Binding. Analytical Chemistry, 2019, 91, 10887-10893.	3.2	79
116	Pt–S Bondâ€Mediated Nanoflares for Highâ€Fidelity Intracellular Applications by Avoiding Thiol Cleavage. Angewandte Chemie - International Edition, 2020, 59, 14044-14048.	7.2	79
117	Sensors and biosensors based on metal oxide nanomaterials. TrAC - Trends in Analytical Chemistry, 2019, 121, 115690.	5.8	78
118	Polarity Control for Nonthiolated DNA Adsorption onto Gold Nanoparticles. Langmuir, 2013, 29, 6091-6098.	1.6	77
119	Fluoride-capped nanoceria as a highly efficient oxidase-mimicking nanozyme: inhibiting product adsorption and increasing oxygen vacancies. Nanoscale, 2019, 11, 17841-17850.	2.8	77
120	A new heavy lanthanide-dependent DNAzyme displaying strong metal cooperativity and unrescuable phosphorothioate effect. Nucleic Acids Research, 2015, 43, 461-469.	6.5	75
121	2-Aminopurine-modified DNA homopolymers for robust and sensitive detection of mercury and silver. Biosensors and Bioelectronics, 2017, 87, 171-177.	5. 3	75
122	Gold Nanoparticles Adsorb DNA and Aptamer Probes Too Strongly and a Comparison with Graphene Oxide for Biosensing. Analytical Chemistry, 2019, 91, 14743-14750.	3.2	75
123	Efficient DNA-Catalyzed Porphyrin Metalation for Fluorescent Ratiometric Pb ²⁺ Detection. Analytical Chemistry, 2019, 91, 11403-11408.	3.2	74
124	Nanozyme's catching up: activity, specificity, reaction conditions and reaction types. Materials Horizons, 2021, 8, 336-350.	6.4	74
125	Silica nanoparticle supported lipid bilayers for gene delivery. Chemical Communications, 2009, , 5100.	2.2	73
126	A New Na ⁺ â€Dependent RNAâ€Cleaving DNAzyme with over 1000â€fold Rate Acceleration by Ethanol. ChemBioChem, 2016, 17, 159-163.	1.3	70

#	Article	IF	CITATIONS
127	Molecularly imprinted nanozymes with faster catalytic activity and better specificity. Nanoscale, 2019, 11, 4854-4863.	2.8	69
128	Rationally Designed Nucleobase and Nucleotide Coordinated Nanoparticles for Selective DNA Adsorption and Detection. Analytical Chemistry, 2013, 85, 12144-12151.	3.2	67
129	Cleavable Molecular Beacon for Hg ²⁺ Detection Based on Phosphorothioate RNA Modifications. Analytical Chemistry, 2015, 87, 6890-6895.	3.2	67
130	Aerosol fabrication of hollow mesoporous silica nanoparticles and encapsulation of l-methionine as a candidate drug cargo. Chemical Communications, 2010, 46, 3019.	2.2	66
131	In Vitro Selection in Serum: RNA-Cleaving DNAzymes for Measuring Ca ²⁺ and Mg ²⁺ . ACS Sensors, 2016, 1, 600-606.	4.0	66
132	Correlation of photobleaching, oxidation and metal induced fluorescence quenching of DNA-templated silver nanoclusters. Nanoscale, 2013, 5, 2840.	2.8	65
133	Liposome Supported Metal Oxide Nanoparticles: Interaction Mechanism, Light Controlled Content Release, and Intracellular Delivery. Small, 2014, 10, 3927-3931.	5.2	63
134	DNA Adsorption by ZnO Nanoparticles near Its Solubility Limit: Implications for DNA Fluorescence Quenching and DNAzyme Activity Assays. Langmuir, 2016, 32, 5672-5680.	1.6	63
135	Parallel Polyadenine Duplex Formation at Low pH Facilitates DNA Conjugation onto Gold Nanoparticles. Langmuir, 2016, 32, 11986-11992.	1.6	63
136	Molecularly Imprinted Polymers with DNA Aptamer Fragments as Macromonomers. ACS Applied Materials & DNA (Section 1988) amp; Interfaces, 2016, 8, 6371-6378.	4.0	63
137	An Exceptionally Selective DNA Cooperatively Binding Two Ca ²⁺ Ions. ChemBioChem, 2017, 18, 518-522.	1.3	63
138	Critical evaluation of aptamer binding for biosensor designs. TrAC - Trends in Analytical Chemistry, 2022, 146, 116480.	5.8	63
139	A Stable Lipid/TiO ₂ Interface with Headgroup-Inversed Phosphocholine and a Comparison with SiO ₂ . Journal of the American Chemical Society, 2015, 137, 11736-11742.	6.6	61
140	G-Quadruplex DNA for Fluorescent and Colorimetric Detection of Thallium(I). ACS Sensors, 2016, 1, 137-143.	4.0	61
141	Nanoceria as a DNase I mimicking nanozyme. Chemical Communications, 2019, 55, 13215-13218.	2.2	61
142	DNA Triplex and Quadruplex Assembled Nanosensors for Correlating K ⁺ and pH in Lysosomes. Angewandte Chemie - International Edition, 2021, 60, 5453-5458.	7.2	61
143	Light-Activated Metal-Coordinated Supramolecular Complexes with Charge-Directed Self-Assembly. Journal of Physical Chemistry C, 2013, 117, 3653-3661.	1.5	60
144	Tandem Phosphorothioate Modifications for DNA Adsorption Strength and Polarity Control on Gold Nanoparticles. ACS Applied Materials & Interfaces, 2014, 6, 14795-14800.	4.0	60

#	Article	IF	CITATIONS
145	G-quadruplex DNA for construction of biosensors. TrAC - Trends in Analytical Chemistry, 2020, 132, 116060.	5.8	60
146	Molecular Imprinting for Substrate Selectivity and Enhanced Activity of Enzyme Mimics. Small, 2017, 13, 1602730.	5.2	59
147	Freezing-Driven DNA Adsorption on Gold Nanoparticles: Tolerating Extremely Low Salt Concentration but Requiring High DNA Concentration. Langmuir, 2019, 35, 6476-6482.	1.6	59
148	Sensing Adenosine and ATP by Aptamers and Gold Nanoparticles: Opposite Trends of Color Change from Domination of Target Adsorption Instead of Aptamer Binding. ACS Sensors, 2020, 5, 2885-2893.	4.0	59
149	DNA-encoded bimetallic Au-Pt dumbbell nanozyme for high-performance detection and eradication of Escherichia coli O157:H7. Biosensors and Bioelectronics, 2021, 187, 113327.	5.3	59
150	Covalent and Noncovalent Functionalization of Graphene Oxide with DNA for Smart Sensing. Advanced Intelligent Systems, 2020, 2, 2000123.	3.3	58
151	Selfâ€limited Phosphataseâ€mimicking CeO ₂ Nanozymes. ChemNanoMat, 2020, 6, 947-952.	1.5	58
152	Synergistic pH effect for reversible shuttling aptamer-based biosensors between graphene oxide and target molecules. Journal of Materials Chemistry, 2011, 21, 8991.	6.7	57
153	In Vitro Selection of Chromiumâ€Dependent DNAzymes for Sensing Chromium(III) and Chromium(VI). Chemistry - A European Journal, 2016, 22, 9835-9840.	1.7	57
154	Magnetic Iron Oxide Nanoparticle Seeded Growth of Nucleotide Coordinated Polymers. ACS Applied Materials & Samp; Interfaces, 2016, 8, 15615-15622.	4.0	57
155	Robust magnetic laccase-mimicking nanozyme for oxidizing o-phenylenediamine and removing phenolic pollutants. Journal of Environmental Sciences, 2020, 88, 103-111.	3.2	57
156	Graphene oxide as a photocatalytic nuclease mimicking nanozyme for DNA cleavage. Nano Research, 2020, 13, 455-460.	5.8	57
157	Visual detection oflead(II) using a label-free DNA-based sensor and its immobilization within a monolithic hydrogel. Analyst, The, 2012, 137, 704-709.	1.7	56
158	Toward Fast and Quantitative Modification of Large Gold Nanoparticles by Thiolated DNA: Scaling of Nanoscale Forces, Kinetics, and the Need for Thiol Reduction. Journal of Physical Chemistry C, 2013, 117, 15677-15684.	1.5	55
159	Selfâ€Assembly of Nucleobase, Nucleoside and Nucleotide Coordination Polymers: From Synthesis to Applications. ChemNanoMat, 2017, 3, 670-684.	1.5	54
160	Nucleotide and DNA coordinated lanthanides: From fundamentals to applications. Coordination Chemistry Reviews, 2019, 387, 235-248.	9.5	54
161	Review of recent progress on DNA-based biosensors for Pb2+ detection. Analytica Chimica Acta, 2021, 1147, 124-143.	2.6	54
162	Polyvalent Spherical Nucleic Acids for Universal Display of Functional DNA with Ultrahigh Stability. Angewandte Chemie - International Edition, 2018, 57, 9439-9442.	7.2	53

#	Article	IF	Citations
163	Molecular Imprinting with Functional DNA. Small, 2019, 15, e1805246.	5.2	53
164	DNAzyme Hybridization, Cleavage, Degradation, and Sensing in Undiluted Human Blood Serum. Analytical Chemistry, 2015, 87, 4001-4007.	3.2	52
165	Separation of Short Single- and Double-Stranded DNA Based on Their Adsorption Kinetics Difference on Graphene Oxide. Nanomaterials, 2013, 3, 221-228.	1.9	51
166	Amplifying the Macromolecular Crowding Effect Using Nanoparticles. Journal of the American Chemical Society, 2012, 134, 35-38.	6.6	50
167	Fluorescent DNA Probing Nanoscale MnO ₂ : Adsorption, Dissolution by Thiol, and Nanozyme Activity. Langmuir, 2018, 34, 3094-3101.	1.6	50
168	Dissecting the Effect of Salt for More Sensitive Label-Free Colorimetric Detection of DNA Using Gold Nanoparticles. Analytical Chemistry, 2020, 92, 13354-13360.	3.2	50
169	Nanodiamond decorated liposomes as highly biocompatible delivery vehicles and a comparison with carbon nanotubes and graphene oxide. Nanoscale, 2013, 5, 12375.	2.8	49
170	Self-healable and reversible liposome leakage by citrate-capped gold nanoparticles: probing the initial adsorption/desorption induced lipid phase transition. Nanoscale, 2015, 7, 15599-15604.	2.8	49
171	Adsorption of Arsenite on Gold Nanoparticles Studied with DNA Oligonucleotide Probes. Langmuir, 2019, 35, 7304-7311.	1.6	49
172	Solving the H2O2 by-product problem using a catalase-mimicking nanozyme cascade to enhance glycolic acid oxidase. Chemical Engineering Journal, 2020, 388, 124249.	6.6	49
173	Covalent Organic Framework Sponges for Efficient Solar Desalination and Selective Uranium Recovery. ACS Applied Materials & Samp; Interfaces, 2021, 13, 31561-31568.	4.0	49
174	A hydrothermal synthesis of orthorhombic nanocrystalline cobalt diselenide CoSe2. Materials Research Bulletin, 2000, 35, 2403-2408.	2.7	48
175	A Redox Reaction To Synthesize Nanocrystalline Cu2-xSe in Aqueous Solution. Inorganic Chemistry, 2000, 39, 1838-1839.	1.9	47
176	Aptamer-nanoparticle bioconjugates enhance intracellular delivery of vinorelbine to breast cancer cells. Journal of Drug Targeting, 2014, 22, 57-66.	2.1	47
177	Profiling Metal Oxides with Lipids: Magnetic Liposomal Nanoparticles Displaying DNA and Proteins. Angewandte Chemie - International Edition, 2016, 55, 12063-12067.	7.2	47
178	Tuning DNA adsorption affinity and density on metal oxide and phosphate for improved arsenate detection. Journal of Colloid and Interface Science, 2017, 493, 249-256.	5.0	47
179	Surface Science of Nanozymes and Defining a Nanozyme Unit. Langmuir, 2022, 38, 3617-3622.	1.6	47
180	DNAzyme catalytic beacon sensors that resist temperature-dependent variations. Chemical Communications, 2009, , 4103.	2.2	46

#	Article	IF	Citations
181	Covalent linking DNA to graphene oxide and its comparison with physisorbed probes for Hg2+ detection. Biosensors and Bioelectronics, 2016, 79, 244-250.	5. 3	46
182	Fast Molecular Beacon Hybridization in Organic Solvents with Improved Target Specificity. Journal of Physical Chemistry B, 2010, 114, 15694-15699.	1.2	45
183	DNA Adsorption by Indium Tin Oxide Nanoparticles. Langmuir, 2015, 31, 371-377.	1.6	45
184	Highly Stable Colorimetric Sensing by Assembly of Gold Nanoparticles with SYBR Green I: From Charge Screening to Charge Neutralization. Analytical Chemistry, 2020, 92, 1455-1462.	3.2	45
185	Assembly of DNA-Functionalized Nanoparticles in Alcoholic Solvents Reveals Opposite Thermodynamic and Kinetic Trends for DNA Hybridization. Journal of the American Chemical Society, 2010, 132, 6300-6301.	6.6	44
186	Effects of Polyethylene Glycol on DNA Adsorption and Hybridization on Gold Nanoparticles and Graphene Oxide. Langmuir, 2012, 28, 14330-14337.	1.6	44
187	Oxidation Levelâ€Dependent Zwitterionic Liposome Adsorption and Rupture by Grapheneâ€based Materials and Lightâ€Induced Content Release. Small, 2013, 9, 1030-1035.	5. 2	44
188	Glutathione-s-transferase modified electrodes for detecting anticancer drugs. Biosensors and Bioelectronics, 2014, 58, 232-236.	5. 3	44
189	Distinction of Individual Lanthanide lons with a DNAzyme Beacon Array. ACS Sensors, 2016, 1, 732-738.	4.0	44
190	Intracellular delivery of a molecularly imprinted peroxidase mimicking DNAzyme for selective oxidation. Materials Horizons, 2018, 5, 738-744.	6.4	44
191	The Most Active Oxidaseâ€Mimicking Mn ₂ O ₃ Nanozyme for Biosensor Signal Generation. Chemistry - A European Journal, 2021, 27, 9597-9604.	1.7	44
192	Design of asymmetric DNAzymes for dynamic control of nanoparticle aggregation states in response to chemical stimuli. Organic and Biomolecular Chemistry, 2006, 4, 3435.	1.5	43
193	Visual optical biosensors based on DNA-functionalized polyacrylamide hydrogels. Methods, 2013, 64, 292-298.	1.9	43
194	Orthogonal Adsorption Onto Nanoâ€Graphene Oxide Using Different Intermolecular Forces for Multiplexed Delivery. Advanced Materials, 2013, 25, 4087-4092.	11.1	43
195	Multi-walled carbon nanotubes modified screen-printed electrodes for cisplatin detection. Electrochimica Acta, 2015, 158, 271-276.	2.6	43
196	Graphene oxide surface blocking agents can increase the DNA biosensor sensitivity. Biotechnology Journal, 2016, 11, 780-787.	1.8	43
197	Target Selfâ€Enhanced Selectivity in Metalâ€Specific DNAzymes. Angewandte Chemie - International Edition, 2020, 59, 3573-3577.	7.2	43
198	DNA Triplex and Quadruplex Assembled Nanosensors for Correlating K + and pH in Lysosomes. Angewandte Chemie, 2021, 133, 5513-5518.	1.6	43

#	Article	IF	CITATIONS
199	Parts-per-Million of Polyethylene Glycol as a Non-Interfering Blocking Agent for Homogeneous Biosensor Development. Analytical Chemistry, 2013, 85, 10045-10050.	3.2	42
200	Hybrid nanomaterials of WS ₂ or MoS ₂ nanosheets with liposomes: biointerfaces and multiplexed drug delivery. Nanoscale, 2017, 9, 13187-13194.	2.8	42
201	Freezingâ€directed Stretching and Alignment of DNA Oligonucleotides. Angewandte Chemie - International Edition, 2019, 58, 2109-2113.	7.2	42
202	Kanamycin Adsorption on Gold Nanoparticles Dominates Its Label-Free Colorimetric Sensing with Its Aptamer. Langmuir, 2020, 36, 11490-11498.	1.6	42
203	DNA Oligonucleotide-Functionalized Liposomes: Bioconjugate Chemistry, Biointerfaces, and Applications. Langmuir, 2018, 34, 15000-15013.	1.6	41
204	NIR Light-Responsive Hollow Porous Gold Nanospheres for Controllable Pressure-Based Sensing and Photothermal Therapy of Cancer Cells. Analytical Chemistry, 2019, 91, 15418-15424.	3.2	41
205	Labelâ€Free Colorimetric Biosensors Based on Aptamers and Gold Nanoparticles: A Critical Review. Analysis & Sensing, 2021, 1, 30-43.	1.1	41
206	Room temperature growth of nanocrystalline tin (II) selenide from aqueous solution. Journal of Crystal Growth, 2000, 217, 157-160.	0.7	40
207	Robust Hydrogels from Lanthanide Nucleotide Coordination with Evolving Nanostructures for a Highly Stable Protein Encapsulation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 14321-14330.	4.0	40
208	Multi-metal-dependent nucleic acid enzymes. Metallomics, 2018, 10, 30-48.	1.0	40
209	Length-Dependent Diblock DNA with Poly-cytosine (Poly-C) as High-Affinity Anchors on Graphene Oxide. Langmuir, 2018, 34, 1171-1177.	1.6	40
210	Label-free and Dye-free Fluorescent Sensing of Tetracyclines Using a Capture-Selected DNA Aptamer. Analytical Chemistry, 2022, 94, 10175-10182.	3.2	40
211	Driving Adsorbed Gold Nanoparticle Assembly by Merging Lipid Gel/Fluid Interfaces. Langmuir, 2015, 31, 13271-13274.	1.6	39
212	Surface-assisted assembly of a histidine-rich lipidated peptide for simultaneous exfoliation of graphite and functionalization of graphene nanosheets. Nanoscale, 2019, 11, 2999-3012.	2.8	39
213	Recent progress in nanomaterial-enhanced fluorescence polarization/anisotropy sensors. Chinese Chemical Letters, 2019, 30, 1575-1580.	4.8	39
214	Cleaving DNA by nanozymes. Journal of Materials Chemistry B, 2020, 8, 7135-7142.	2.9	39
215	Aptamer density dependent cellular uptake of lipid-capped polymer nanoparticles for polyvalent targeted delivery of vinorelbine to cancer cells. RSC Advances, 2015, 5, 16931-16939.	1.7	38
216	<i>In Vitro</i> Selection of a DNAzyme Cooperatively Binding Two Lanthanide Ions for RNA Cleavage. Biochemistry, 2016, 55, 2518-2525.	1.2	38

#	Article	IF	Citations
217	Selection and Screening of DNA Aptamers for Inorganic Nanomaterials. Chemistry - A European Journal, 2018, 24, 2525-2532.	1.7	38
218	Adsorption of Phosphate and Polyphosphate on Nanoceria Probed by DNA Oligonucleotides. Langmuir, 2018, 34, 7899-7905.	1.6	38
219	Fabrication of nanoporous graphene/cuprous oxide nanocomposite and its application for chemiluminescence sensing of NADH in human serum and cells. Sensors and Actuators B: Chemical, 2019, 290, 15-22.	4.0	38
220	A comparison of two classic Pb ²⁺ -dependent RNA-cleaving DNAzymes. Inorganic Chemistry Frontiers, 2016, 3, 494-501.	3.0	37
221	Selection of Aptamers for Sensing Caffeine and Discrimination of Its Three Single Demethylated Analogues. Analytical Chemistry, 2022, 94, 3142-3149.	3.2	37
222	Stimuli-responsive releasing of gold nanoparticles and liposomes from aptamer-functionalized hydrogels. Nanotechnology, 2011, 22, 494011.	1.3	36
223	Biochemical Characterization of a Lanthanide-Dependent DNAzyme with Normal and Phosphorothioate-Modified Substrates. Biochemistry, 2015, 54, 6132-6138.	1.2	36
224	A Silver-Specific DNAzyme with a New Silver Aptamer and Salt-Promoted Activity. Biochemistry, 2017, 56, 1955-1962.	1.2	36
225	Aptamer-based strategies for recognizing adenine, adenosine, ATP and related compounds. Analyst, The, 2020, 145, 6753-6768.	1.7	36
226	Attaching DNA to Gold Nanoparticles With a Protein Corona. Frontiers in Chemistry, 2020, 8, 121.	1.8	36
227	Controlling dopamine binding by the new aptamer for a FRET-based biosensor. Biosensors and Bioelectronics, 2021, 173, 112798.	5.3	36
228	Etching silver nanoparticles using DNA. Materials Horizons, 2019, 6, 155-159.	6.4	35
229	Promoting DNA Adsorption by Acids and Polyvalent Cations: Beyond Charge Screening. Langmuir, 2020, 36, 11183-11195.	1.6	35
230	Highly Selective Fluorescent Sensing of Phosphite through Recovery of Poisoned Nickel Oxide Nanozyme. Analytical Chemistry, 2020, 92, 3118-3124.	3.2	35
231	Towards understanding of poly-guanine activated fluorescent silver nanoclusters. Nanotechnology, 2014, 25, 155501.	1.3	34
232	Selection of DNAzymes for Sensing Aquatic Bacteria: <i>Vibrio Anguillarum</i> . Analytical Chemistry, 2019, 91, 7887-7893.	3.2	34
233	Heating Drives DNA to Hydrophobic Regions While Freezing Drives DNA to Hydrophilic Regions of Graphene Oxide for Highly Robust Biosensors. Journal of the American Chemical Society, 2020, 142, 14702-14709.	6.6	34
234	Selection of a metal ligand modified DNAzyme for detecting Ni2+. Biosensors and Bioelectronics, 2020, 165, 112285.	5. 3	34

#	Article	IF	Citations
235	Nanomaterial and Aptamer-Based Sensing: Target Binding versus Target Adsorption Illustrated by the Detection of Adenosine and ATP on Metal Oxides and Graphene Oxide. Analytical Chemistry, 2021, 93, 3018-3025.	3.2	34
236	Biomimetic sensing based on chemically induced assembly of a signaling DNA aptamer on a fluid bilayer membrane. Chemical Communications, 2012, 48, 3718.	2.2	33
237	Kinetic Discrimination of Metal lons Using DNA for Highly Sensitive and Selective Cr ³⁺ Detection. ACS Sensors, 2017, 2, 663-669.	4.0	33
238	A Cell-Mimicking Structure Converting Analog Volume Changes to Digital Colorimetric Output with Molecular Selectivity. Nano Letters, 2017, 17, 7926-7931.	4.5	33
239	Gold nanoparticles as dehydrogenase mimicking nanozymes for estradiol degradation. Chinese Chemical Letters, 2019, 30, 1655-1658.	4.8	33
240	Photoactivatable fluorescent probes for spatiotemporal-controlled biosensing and imaging. TrAC - Trends in Analytical Chemistry, 2020, 125, 115811.	5.8	33
241	Fluorescent DNAzyme Biosensors for Metal Ions Based on Catalytic Molecular Beacons. , 2006, 335, 275-288.		32
242	Assembly of DNA-Functionalized Gold Nanoparticles with Gaps and Overhangs in Linker DNA. Journal of Physical Chemistry C, 2011, 115, 7851-7857.	1.5	32
243	Exploring the thermal stability of DNA-linked gold nanoparticles in ionic liquids and molecular solvents. Chemical Science, 2012, 3, 3216.	3.7	32
244	A highly specific sodium aptamer probed by 2-aminopurine for robust Na+sensing. Nucleic Acids Research, 2016, 44, gkw845.	6.5	32
245	Hg ²⁺ detection using a phosphorothioate RNA probe adsorbed on graphene oxide and a comparison with thymine-rich DNA. Analyst, The, 2016, 141, 3788-3793.	1.7	32
246	Dipole Orientation Matters: Longer-Circulating Choline Phosphate than Phosphocholine Liposomes for Enhanced Tumor Targeting. ACS Applied Materials & Samp; Interfaces, 2017, 9, 17736-17744.	4.0	32
247	Ultrasensitive DNAzymeâ€Based Ca ²⁺ Detection Boosted by Ethanol and a Solventâ€Compatible Scaffold for Aptazyme Design. ChemBioChem, 2018, 19, 31-36.	1.3	32
248	Detection of chloramphenicol with anÂaptamer-based colorimetric assay: critical evaluation of specific and unspecific binding of analyte molecules. Mikrochimica Acta, 2020, 187, 668.	2.5	32
249	Zn ²⁺ â€Dependent DNAzymes: From Solution Chemistry to Analytical, Materials and Therapeutic Applications. ChemBioChem, 2021, 22, 779-789.	1.3	32
250	Effect of proteins on the oxidase-like activity of CeO ₂ nanozymes for immunoassays. Analyst, The, 2021, 146, 864-873.	1.7	32
251	Protection and Promotion of UV Radiationâ€Induced Liposome Leakage via DNAâ€Directed Assembly with Gold Nanoparticles. Advanced Materials, 2011, 23, 3182-3186.	11.1	31
252	Immobilization of DNA on Magnetic Microparticles for Mercury Enrichment and Detection with Flow Cytometry. Chemistry - A European Journal, 2011, 17, 5004-5010.	1.7	31

#	Article	IF	CITATIONS
253	Tandem DNAzymes for mRNA cleavage: Choice of enzyme, metal ions and the antisense effect. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1460-1463.	1.0	31
254	Mn ²⁺ -Assisted DNA Oligonucleotide Adsorption on Ti ₂ C MXene Nanosheets. Langmuir, 2019, 35, 9858-9866.	1.6	31
255	Sensing ATP: Zeolitic Imidazolate Framework-67 Is Superior to Aptamers for Target Recognition. Analytical Chemistry, 2021, 93, 7707-7713.	3.2	31
256	Liposome/Graphene Oxide Interaction Studied by Isothermal Titration Calorimetry. Langmuir, 2016, 32, 2458-2463.	1.6	30
257	Good's buffers have various affinities to gold nanoparticles regulating fluorescent and colorimetric DNA sensing. Chemical Science, 2020, 11, 6795-6804.	3.7	30
258	DNA-Functionalized Gold Nanoparticles in Macromolecularly Crowded Polymer Solutions. Journal of Physical Chemistry B, 2012, 116, 13396-13402.	1.2	29
259	Dissecting Colloidal Stabilization Factors in Crowded Polymer Solutions by Forming Self-Assembled Monolayers on Gold Nanoparticles. Langmuir, 2013, 29, 6018-6024.	1.6	29
260	Cr ³⁺ Binding to DNA Backbone Phosphate and Bases: Slow Ligand Exchange Rates and Metal Hydrolysis. Inorganic Chemistry, 2016, 55, 8193-8200.	1.9	29
261	Proofreading and Error Removal in a Nanomaterial Assembly. Angewandte Chemie - International Edition, 2005, 44, 7290-7293.	7.2	28
262	Cation-Size-Dependent DNA Adsorption Kinetics and Packing Density on Gold Nanoparticles: An Opposite Trend. Langmuir, 2014, 30, 13228-13234.	1.6	28
263	A Comprehensive Immunoreceptor Phosphotyrosine-based Signaling Network Revealed by Reciprocal Protein–Peptide Array Screening. Molecular and Cellular Proteomics, 2015, 14, 1846-1858.	2.5	28
264	Desulfurization Activated Phosphorothioate DNAzyme for the Detection of Thallium. Analytical Chemistry, 2015, 87, 10443-10449.	3.2	28
265	Nucleotide coordination with 14 lanthanides studied by isothermal titration calorimetry. Chinese Chemical Letters, 2018, 29, 151-156.	4.8	28
266	Liposomeâ€Boosted Peroxidaseâ€Mimicking Nanozymes Breaking the pH Limit. Chemistry - A European Journal, 2020, 26, 16659-16665.	1.7	28
267	In vitro Selection of Chemically Modified DNAzymes. ChemistryOpen, 2020, 9, 1046-1059.	0.9	28
268	DNA-mediated growth of noble metal nanomaterials for biosensing applications. TrAC - Trends in Analytical Chemistry, 2022, 148, 116533.	5.8	28
269	Dissecting the effect of anions on Hg2+ detection using a FRET based DNA probe. Analyst, The, 2012, 137, 3535.	1.7	27
270	Engineering base-excised aptamers for highly specific recognition of adenosine. Chemical Science, 2020, 11, 2735-2743.	3.7	27

#	Article	IF	CITATIONS
271	Extraction of DNA staining dyes from DNA using hydrophobic ionic liquids. Chemical Communications, 2013, 49, 4537.	2.2	26
272	The group trend of lanthanides binding to DNA and DNAzymes with a complex but symmetric pattern. Chemical Communications, 2014, 50, 11859-11862.	2.2	26
273	A Selective Na ⁺ Aptamer Dissected by Sensitized Tb ³⁺ Luminescence. ChemBioChem, 2016, 17, 1563-1570.	1.3	26
274	Adsorption of Nanoceria by Phosphocholine Liposomes. Langmuir, 2016, 32, 13276-13283.	1.6	26
275	Continuously Tunable Nucleotide/Lanthanide Coordination Nanoparticles for DNA Adsorption and Sensing. ACS Omega, 2018, 3, 9043-9051.	1.6	26
276	Fluorescent detection of fluoride by CeO2 nanozyme oxidation of Amplex red. Inorganic Chemistry Communication, 2019, 106, 38-42.	1.8	26
277	Synergistically Boosted Degradation of Organic Dyes by CeO ₂ Nanoparticles with Fluoride at Low pH. ACS Applied Nano Materials, 2020, 3, 842-849.	2.4	26
278	Nanozymeâ€based luminescence detection. Luminescence, 2020, 35, 1185-1194.	1.5	26
279	Promotion and Inhibition of the Oxidaseâ€Mimicking Activity of Nanoceria by Phosphate, Polyphosphate, and DNA. ChemBioChem, 2020, 21, 2178-2186.	1.3	26
280	An Activatable Nanoenzyme Reactor for Coenhanced Chemodynamic and Starving Therapy Against Tumor Hypoxia and Antioxidant Defense System. CCS Chemistry, 2021, 3, 1217-1230.	4.6	26
281	Fluorescent sensors for sodium ions. Analytical Methods, 2017, 9, 5570-5579.	1.3	26
282	Metalâ€Induced Specific and Nonspecific Oligonucleotide Folding Studied by FRET and Related Biophysical and Bioanalytical Implications. Chemistry - A European Journal, 2012, 18, 1202-1208.	1.7	25
283	Inhibiting the VIM-2 Metallo- \hat{l}^2 -Lactamase by Graphene Oxide and Carbon Nanotubes. ACS Applied Materials & Samp; Interfaces, 2015, 7, 9898-9903.	4.0	25
284	From general base to general acid catalysis in a sodium-specific DNAzyme by a guanine-to-adenine mutation. Nucleic Acids Research, 2019, 47, 8154-8162.	6.5	25
285	Transition Metal-Mediated DNA Adsorption on Polydopamine Nanoparticles. Langmuir, 2020, 36, 3260-3267.	1.6	25
286	Hg(II) Adsorption on Gold Nanoparticles Dominates DNA-Based Label-Free Colorimetric Sensing. ACS Applied Nano Materials, 2021, 4, 1377-1384.	2.4	25
287	Self-photo-oxidation for extending visible light absorption of carbon dots and oxidase-like activity. Carbon, 2021, 182, 537-544.	5.4	25
288	DNA duplex stabilization in crowded polyanion solutions. Chemical Communications, 2013, 49, 1306.	2.2	24

#	Article	IF	CITATIONS
289	Current and emerging tools for detecting protozoan cysts and oocysts in water. TrAC - Trends in Analytical Chemistry, 2019, 121, 115695.	5.8	24
290	Nitrogen-doped nanoporous graphene induced by a multiple confinement strategy for membrane separation of rare earth. IScience, 2021, 24, 101920.	1.9	24
291	Arousing Electrochemiluminescence Out of Non-Electroluminescent Monomers within Covalent Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2021, 13, 47921-47931.	4.0	24
292	DNA-Functionalized Nanoceria for Probing Oxidation of Phosphorus Compounds. Langmuir, 2018, 34, 15871-15877.	1.6	23
293	Phosphorothioate nucleic acids for probing metal binding, biosensing and nanotechnology. Coordination Chemistry Reviews, 2021, 428, 213624.	9.5	23
294	A gold nanoparticle-based immunochromatographic assay for simultaneous detection of multiplex sildenafil adulterants in health food by only one antibody. Analytica Chimica Acta, 2021, 1141, 1-12.	2.6	23
295	Adsorption of Selenite and Selenate by Metal Oxides Studied with Fluorescent DNA Probes for Analytical Application. Journal of Analysis and Testing, 2017, 1 , 1 .	2.5	22
296	Two Completely Different Mechanisms for Highly Specific Na ⁺ Recognition by DNAzymes. ChemBioChem, 2017, 18, 1828-1835.	1.3	22
297	Photosensitization of Molecular Oxygen on Graphene Oxide for Ultrasensitive Signal Amplification. Chemistry - A European Journal, 2018, 24, 2602-2608.	1.7	22
298	Interfacing Catalytic DNA with Nanomaterials. Advanced Materials Interfaces, 2020, 7, 2001017.	1.9	22
299	Designing signal-on sensors by regulating nanozyme activity. Analytical Methods, 2020, 12, 4708-4723.	1.3	22
300	Enhancing the peroxidase-like activity and stability of gold nanoparticles by coating a partial iron phosphate shell. Nanoscale, 2020, 12, 22467-22472.	2.8	22
301	Spherical Nucleic Acid Mediated Functionalization of Polydopamine-Coated Nanoparticles for Selective DNA Extraction and Detection. Bioconjugate Chemistry, 2021, 32, 801-809.	1.8	22
302	Nucleobase, nucleoside, nucleotide, and oligonucleotide coordinated metal ions for sensing and biomedicine applications. Nano Research, 2022, 15, 71-84.	5.8	22
303	Critical review of bio/nano sensors for arsenic detection. Trends in Environmental Analytical Chemistry, 2021, 32, e00143.	5.3	22
304	Synthesis strategies of covalent organic frameworks: An overview from nonconventional heating methods and reaction media. Green Energy and Environment, 2023, 8, 1596-1618.	4.7	22
305	Fast assembly of non-thiolated DNA on gold surface at lower pH. Journal of Colloid and Interface Science, 2013, 411, 92-97.	5.0	21
306	Electrostatically directed liposome adsorption, internalization and fusion on hydrogel microparticles. Soft Matter, 2013, 9, 6151.	1.2	21

#	Article	IF	CITATIONS
307	Two Pb2+-specific DNAzymes with opposite trends in split-site-dependent activity. Chemical Communications, 2014, 50, 4442.	2.2	21
308	A platinum shell for ultraslow ligand exchange: unmodified DNA adsorbing more stably on platinum than thiol and dithiol on gold. Chemical Communications, 2015, 51, 12084-12087.	2.2	21
309	Poly•ytosine DNA as a Highâ€Affinity Ligand for Inorganic Nanomaterials. Angewandte Chemie, 2017, 129, 6304-6308.	1.6	21
310	Misfolding of a DNAzyme for ultrahigh sodium selectivity over potassium. Nucleic Acids Research, 2018, 46, 10262-10271.	6.5	21
311	Development and application of DNA-aptamer-coupled magnetic beads and aptasensors for the detection of $\langle i \rangle$ Cryptosporidium parvum $\langle i \rangle$ oocysts in drinking and recreational water resources. Canadian Journal of Microbiology, 2019, 65, 851-857.	0.8	21
312	Leakage and Rupture of Lipid Membranes by Charged Polymers and Nanoparticles. Langmuir, 2020, 36, 810-818.	1.6	21
313	Enhancing the Sensitivity of DNA and Aptamer Probes in the Dextran/PEG Aqueous Two-Phase System. Analytical Chemistry, 2021, 93, 8577-8584.	3.2	21
314	Zn ²⁺ oordinationâ€Driven RNA Assembly with Retained Integrity and Biological Functions. Angewandte Chemie - International Edition, 2021, 60, 22970-22976.	7.2	21
315	Self-assembled manganese phthalocyanine nanoparticles with enhanced peroxidase-like activity for anti-tumor therapy. Nano Research, 2022, 15, 2347-2354.	5.8	21
316	In Situ Fabrication of Nanoceria with Oxidase-like Activity at Neutral pH: Mechanism and Boosted Bio-Nanozyme Cascades. ACS Applied Materials & Samp; Interfaces, 2021, 13, 50236-50245.	4.0	21
317	Selection of DNA Aptamers for Sensing Uric Acid in Simulated Tears. Analysis & Sensing, 2022, 2, .	1.1	21
318	NiO Nanoparticles for Exceptionally Stable DNA Adsorption and Its Extraction from Biological Fluids. Langmuir, 2018, 34, 9314-9321.	1.6	20
319	A DNA-based biosensor for aqueous Hg(II): Performance under variable pH, temperature and competing ligand composition. Journal of Hazardous Materials, 2020, 385, 121572.	6.5	20
320	Incorporation of Boronic Acid into Aptamer-Based Molecularly Imprinted Hydrogels for Highly Specific Recognition of Adenosine. ACS Applied Bio Materials, 2020, 3, 2568-2576.	2.3	20
321	Interfacing DNA and Polydopamine Nanoparticles and Its Applications. Particle and Particle Systems Characterization, 2020, 37, 2000208.	1.2	20
322	Searching for a DNAzyme Version of the Leadzyme. Journal of Molecular Evolution, 2015, 81, 235-244.	0.8	19
323	Interfacing DNA Oligonucleotides with Calcium Phosphate and Other Metal Phosphates. Langmuir, 2018, 34, 14975-14982.	1.6	19
324	Preâ€oxidation of Gold Nanoclusters Results in a 66 % Anodic Electrochemiluminescence Yield and Drives Mechanistic Insights. Angewandte Chemie, 2019, 131, 11817-11820.	1.6	19

#	Article	IF	CITATIONS
325	Effects of Small Molecules on DNA Adsorption by Gold Nanoparticles and a Case Study of Tris(2-carboxyethyl)phosphine (TCEP). Langmuir, 2019, 35, 13461-13468.	1.6	19
326	Charge and Coordination Directed Liposome Fusion onto SiO ₂ and TiO ₂ Nanoparticles. Langmuir, 2019, 35, 1672-1681.	1.6	19
327	Freezingâ€Assisted Conjugation of Unmodified Diblock DNA to Hydrogel Nanoparticles and Monoliths for DNA and Hg ²⁺ Sensing. Angewandte Chemie - International Edition, 2021, 60, 12985-12991.	7.2	19
328	Platinated DNA oligonucleotides: new probes forming ultrastable conjugates with graphene oxide. Nanoscale, 2014, 6, 7079.	2.8	18
329	Phosphorothioate DNA Stabilized Fluorescent Gold and Silver Nanoclusters. Nanomaterials, 2015, 5, 804-813.	1.9	18
330	Headgroup-Inversed Liposomes: Biointerfaces, Supported Bilayers and Applications. Langmuir, 2018, 34, 9337-9348.	1.6	18
331	Nucleoside-based fluorescent carbon dots for discrimination of metal ions. Journal of Materials Chemistry B, 2020, 8, 3640-3646.	2.9	18
332	Porphyrin metalation catalyzed by DNAzymes and nanozymes. Inorganic Chemistry Frontiers, 2021, 8, 2183-2199.	3.0	18
333	Cell-Directed Localization and Orientation of a Functional Foreign Transmembrane Protein within a Silica Nanostructure. Journal of the American Chemical Society, 2009, 131, 14255-14257.	6.6	17
334	An Efficient Lanthanideâ€Dependent DNAzyme Cleaving 2′‰5′â€Linked RNA. ChemBioChem, 2016, 17, 8	9 0:8 94.	17
335	An in Vitro–Selected DNAzyme Mutant Highly Specific for Na + under Slightly Acidic Conditions. ChemBioChem, 2019, 20, 537-542.	1.3	17
336	Concentric DNA Amplifier That Streamlines In-Solution Biorecognition and On-Particle Biocatalysis. Analytical Chemistry, 2020, 92, 3220-3227.	3.2	17
337	Functional-DNA–Based Nanoscale Materials and Devices for Sensing Trace Contaminants in Water. MRS Bulletin, 2008, 33, 34-41.	1.7	16
338	Lanthanide-dependent RNA-cleaving DNAzymes as metal biosensors. Canadian Journal of Chemistry, 2015, 93, 273-278.	0.6	16
339	Zn ²⁺ Induced Irreversible Aggregation, Stacking, and Leakage of Choline Phosphate Liposomes. Langmuir, 2017, 33, 14472-14479.	1.6	16
340	Sub-Angstrom Gold Nanoparticle/Liposome Interfaces Controlled by Halides. Langmuir, 2018, 34, 6628-6635.	1.6	16
341	Polyvalent Spherical Nucleic Acids for Universal Display of Functional DNA with Ultrahigh Stability. Angewandte Chemie, 2018, 130, 9583-9586.	1.6	16
342	Freezingâ€directed Stretching and Alignment of DNA Oligonucleotides. Angewandte Chemie, 2019, 131, 2131-2135.	1.6	16

#	Article	IF	CITATIONS
343	The Two Classic Pb ²⁺ â€Selective DNAzymes Are Related: Rational Evolution for Understanding Metal Selectivity. ChemBioChem, 2020, 21, 1293-1297.	1.3	16
344	Suppressing the background activity of hemin for boosting the sensitivity of DNAzyme-based biosensors by SYBR Green I. Biosensors and Bioelectronics, 2020, 169, 112603.	5. 3	16
345	Direct Measurement of Aqueous Mercury(II): Combining DNA-Based Sensing with Diffusive Gradients in Thin Films. Environmental Science & Environmental S	4.6	16
346	Thiol-suppressed I2-etching of AuNRs: acetylcholinesterase-mediated colorimetric detection of organophosphorus pesticides. Mikrochimica Acta, 2020, 187, 497.	2.5	16
347	Fluidity-Guided Assembly of Au@Pt on Liposomes as a Catalase-Powered Nanomotor for Effective Cell Uptake in Cancer Cells and Plant Leaves. ACS Nano, 2022, 16, 9019-9030.	7.3	16
348	Transition Metal Dichalcogenide Nanosheets for Visual Monitoring PCR Rivaling a Real-Time PCR Instrument. ACS Applied Materials & Interfaces, 2018, 10, 4409-4418.	4.0	15
349	Metal-Doped Polydopamine Nanoparticles for Highly Robust and Efficient DNA Adsorption and Sensing. Langmuir, 2021, 37, 8953-8960.	1.6	15
350	Factors and methods to modulate DNA hybridization kinetics. Biotechnology Journal, 2021, 16, e2000338.	1.8	15
351	Evaporation induced wrinkling of graphene oxide at the nanoparticle interface. Nanoscale, 2015, 7, 919-923.	2.8	14
352	Folding of the silver aptamer in a DNAzyme probed by 2-aminopurine fluorescence. Biochimie, 2018, 145, 145-150.	1.3	14
353	Adsorption of DNA Oligonucleotides by Boronic Acid-Functionalized Hydrogel Nanoparticles. Langmuir, 2019, 35, 13727-13734.	1.6	14
354	Intentional hydrolysis to overcome the hydrolysis problem: detection of Ce(<scp>iv</scp>) by producing oxidase-like nanozymes with F ^{â°'} . Chemical Communications, 2019, 55, 13434-13437.	2.2	14
355	Sensitivity of a classic DNAzyme for Pb ²⁺ modulated by cations, anions and buffers. Analyst, The, 2020, 145, 1384-1388.	1.7	14
356	Adsorption of Linear and Spherical DNA Oligonucleotides onto Microplastics. Langmuir, 2022, 38, 1915-1922.	1.6	14
357	Effect of microstructure on the antioxidant properties of fullerene polymer solutions. RSC Advances, 2013, 3, 4622.	1.7	13
358	Screening of DNAzyme mutants for highly sensitive and selective detection of calcium in milk. Analytical Methods, 2018, 10, 1740-1746.	1.3	13
359	Robust Colorimetric Detection of Cu2+ by Excessed Nucleotide Coordinated Nanozymes. Journal of Analysis and Testing, 2019, 3, 260-268.	2.5	13
360	Cytoplasmic Protein-Powered In Situ Fluorescence Amplification for Intracellular Assay of Low-Abundance Analyte. Analytical Chemistry, 2019, 91, 15179-15186.	3.2	13

#	Article	IF	CITATIONS
361	Trace-Water-Induced Competitive Coordination Synthesis and Functionalization of Porphyrinic Metal–Organic Framework Nanoparticles for Treatment of Hypoxic Tumors. ACS Applied Bio Materials, 2021, 4, 7322-7331.	2.3	13
362	Capping Gold Nanoparticles to Achieve a Protein-like Surface for Loop-Mediated Isothermal Amplification Acceleration and Ultrasensitive DNA Detection. ACS Applied Materials & Samp; Interfaces, 2022, 14, 27666-27674.	4.0	13
363	Catalystâ€functionalized nanomaterials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2009, 1, 35-46.	3.3	12
364	Functional nucleic acids for detecting bacteria. Reviews in Analytical Chemistry, 2013, 32, 77-89.	1.5	12
365	Label-Free Ag+ Detection by Enhancing DNA Sensitized Tb3+ Luminescence. Sensors, 2016, 16, 1370.	2.1	12
366	Enhanced DNA sensitized Tb3+ luminescence in organic solvents for more sensitive detection. Analytica Chimica Acta, 2017, 977, 44-51.	2.6	12
367	An RNAâ€Cleaving Catalytic DNA Accelerated by Freezing. ChemBioChem, 2018, 19, 1012-1017.	1.3	12
368	A DNA as a Substrate and an Enzyme: Direct Profiling of Methyltransferase Activity by Cytosine Methylation of a DNAzyme. Chemistry - A European Journal, 2018, 24, 14500-14505.	1.7	12
369	Cryptosporidium parvum oocyst directed assembly of gold nanoparticles and graphene oxide. Frontiers of Chemical Science and Engineering, 2019, 13, 608-615.	2.3	12
370	Pt–S Bondâ€Mediated Nanoflares for Highâ€Fidelity Intracellular Applications by Avoiding Thiol Cleavage. Angewandte Chemie, 2020, 132, 14148-14152.	1.6	12
371	SYBR Green I promotes melamine binding to poly-thymine DNA and FRET-based ratiometric sensing. Analyst, The, 2021, 146, 1642-1649.	1.7	12
372	Comparing two cortisol aptamers for label-free fluorescent and colorimetric biosensors. Sensors & Diagnostics, 2022, 1, 541-549.	1.9	12
373	Deployment of functional DNA-based biosensors for environmental water analysis. TrAC - Trends in Analytical Chemistry, 2022, 153, 116639.	5. 8	12
374	A Simple Synthesis of Nanocrystalline Binary Metal Chalcogenides in Alkaline Aqueous Solution. Journal of Solid State Chemistry, 2001, 161, 184-189.	1.4	11
375	Degradable starch nanoparticle assisted ethanol precipitation of DNA. Carbohydrate Polymers, 2014, 110, 354-359.	5.1	11
376	Splitting a DNAzyme enables a Na ⁺ -dependent FRET signal from the embedded aptamer. Organic and Biomolecular Chemistry, 2017, 15, 6959-6966.	1.5	11
377	Cu2+-Directed Liposome Membrane Fusion, Positive-Stain Electron Microscopy, and Oxidation. Langmuir, 2018, 34, 7545-7553.	1.6	11
378	Freezing promoted hybridization of very short DNA oligonucleotides. Chemical Communications, 2019, 55, 10300-10303.	2.2	11

#	Article	IF	CITATIONS
379	Fluorescein-Stabilized i-Motif DNA and Its Unfolding Leading to a Stronger Adsorption Affinity. Langmuir, 2019, 35, 11932-11939.	1.6	11
380	Replacing Mg ²⁺ by Fe ²⁺ for RNA leaving DNAzymes. ChemBioChem, 2020, 21, 401-407.	1.3	11
381	Interactions between gold, thiol and As(<scp>iii</scp>) for colorimetric sensing. Analyst, The, 2020, 145, 5166-5173.	1.7	11
382	Highly Conductive Ligandâ€Free Cs ₂ PtBr ₆ Perovskite Nanocrystals with a Narrow Bandgap and Efficient Photoelectrochemical Performance. Small, 2021, 17, e2102149.	5.2	11
383	Polyvalent Metal Ion Promoted Adsorption of DNA Oligonucleotides by Montmorillonite. Langmuir, 2021, 37, 1037-1044.	1.6	11
384	Multi-Fluorophore Fluorescence Resonance Energy Transfer for Probing Nucleic Acids Structure and Folding., 2006, 335, 257-272.		10
385	An engineered one-site aptamer with higher sensitivity for label-free detection of adenosine on graphene oxide. Canadian Journal of Chemistry, 2018, 96, 957-963.	0.6	10
386	Target Selfâ€Enhanced Selectivity in Metalâ€Specific DNAzymes. Angewandte Chemie, 2020, 132, 3601-3605.	1.6	10
387	Stronger Adsorption of Phosphorothioate DNA Oligonucleotides on Graphene Oxide by van der Waals Forces. Langmuir, 2020, 36, 13708-13715.	1.6	10
388	Polyâ€Cytosine Deoxyribonucleic Acid Strongly Anchoring on Graphene Oxide Due to Flexible Backbone Phosphate Interactions. Advanced Materials Interfaces, 2021, 8, 2001798.	1.9	10
389	Signaling Kinetics of DNA and Aptamer Biosensors Revealing Graphene Oxide Surface Heterogeneity. Journal of Analysis and Testing, 2022, 6, 20-27.	2.5	10
390	Reversible gating of ion transport through DNA-functionalized carbon nanotube membranes. RSC Advances, 2017, 7, 611-616.	1.7	9
391	Siteâ€Selective Labeling of Chromium(III) as a Quencher on DNA for Molecular Beacons. ChemPlusChem, 2017, 82, 1224-1230.	1.3	9
392	Growing a Nucleotide/Lanthanide Coordination Polymer Shell on Liposomes. Langmuir, 2019, 35, 11217-11224.	1.6	9
393	Fluorescence Polarization for Probing DNA Adsorption by Nanomaterials and Fluorophore/DNA Interactions. Langmuir, 2019, 35, 9954-9961.	1.6	9
394	Unified Etching and Protection of Faceted Silver Nanostructures by DNA Oligonucleotides. Journal of Physical Chemistry C, 2019, 123, 12015-12022.	1.5	9
395	Pb ²⁺ as a Substrate and a Cofactor of a Porphyrin Metalation DNAzyme. ChemBioChem, 2020, 21, 2259-2263.	1.3	9
396	A Polymeric Nanobeacon for Monitoring the Fluctuation of Hydrogen Polysulfides during Fertilization and Embryonic Development. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9

#	Article	IF	CITATIONS
397	Salt-induced lipid transfer between colloidal supported lipid bilayers. Soft Matter, 2010, 6, 2628.	1.2	8
398	Adsorption Promoted Aggregation-Induced Emission Showing Strong Dye Lateral Interactions. Langmuir, 2019, 35, 16304-16311.	1.6	8
399	Dual Enhancement of Gold Nanocluster Electrochemiluminescence: Electrocatalytic Excitation and Aggregationâ€Induced Emission. Angewandte Chemie, 2020, 132, 10068-10071.	1.6	8
400	A portable device enabling fluorescent-to-electric resistant transduction for selective Cr3+ detection based on its slow ligand bind kinetics. Sensors and Actuators B: Chemical, 2020, 304, 127283.	4.0	8
401	Orthogonal Adsorption of Carbon Dots and DNA on Nanoceria. Langmuir, 2020, 36, 2474-2481.	1.6	8
402	Opposite salt-dependent stability of i-motif and duplex reflected in a single DNA hairpin nanomachine. Nanotechnology, 2020, 31, 195503.	1.3	8
403	Selective Heavy Atom Effect Forming Photosensitizing Hot Spots in Double-Stranded DNA Matrix. Journal of Physical Chemistry Letters, 2021, 12, 9205-9212.	2.1	8
404	A sensor array based on DNA-wrapped bimetallic zeolitic imidazolate frameworks for detection of ATP hydrolysis products. Nanoscale, 2021, 14, 26-34.	2.8	8
405	2â€Aminopurine Fluorescence Spectroscopy for Probing a Glucose Binding Aptamer. ChemBioChem, 2022, 23, .	1.3	8
406	Stabilization of Gold Nanoparticles by Hairpin DNA and Implications for Label-Free Colorimetric Biosensors. Langmuir, 2022, 38, 5542-5549.	1.6	8
407	Coordination Nanoparticles Formed by Fluorescent 2-Aminopurine and Au3+: Stability and Nanozyme Activities. Journal of Analysis and Testing, 2019, 3, 219-227.	2.5	7
408	Highly Specific Recognition of Guanosine Using Engineered Baseâ€Excised Aptamers. Chemistry - A European Journal, 2020, 26, 13644-13651.	1.7	7
409	Yttrium Oxide as a Strongly Adsorbing but Nonquenching Surface for DNA Oligonucleotides. Langmuir, 2020, 36, 1034-1042.	1.6	7
410	DNA coated CoZn-ZIF metal-organic frameworks for fluorescent sensing guanosine triphosphate and discrimination of nucleoside triphosphates. Analytica Chimica Acta, 2022, 1207, 339806.	2.6	7
411	Improving molecularly imprinted nanogels by pH modulation. RSC Advances, 2015, 5, 91018-91025.	1.7	6
412	Reselection Yielding a Smaller and More Active Silver-Specific DNAzyme. ACS Omega, 2018, 3, 15174-15181.	1.6	6
413	Potential use of aptamers for diagnosis and treatment of pancreatic cancer. Journal of Drug Targeting, 2019, 27, 853-865.	2.1	6
414	Cooperative Metal Ion-Mediated Adsorption of Spherical Nucleic Acids with a Large Hysteresis. Langmuir, 2020, 36, 14324-14332.	1.6	6

#	Article	IF	CITATIONS
415	CeO ₂ Nanoparticle Transformation to Nanorods and Nanoflowers in Acids with Boosted Oxidative Catalytic Activity. ACS Applied Nano Materials, 2021, 4, 2098-2107.	2.4	6
416	Probing Metal-Dependent Phosphate Binding for the Catalysis of the 17E DNAzyme. Biochemistry, 2021, 60, 1909-1918.	1.2	6
417	Homogeneous assays for aptamer-based ethanolamine sensing: no indication of target binding. Analyst, The, 2022, 147, 1348-1356.	1.7	6
418	Adsorption of DNA Oligonucleotides by Self-Assembled Metalloporphyrin Nanomaterials. Langmuir, 2022, 38, 3553-3560.	1.6	6
419	Colorimetric and Fluorescent Biosensors Based on Directed Assembly of Nanomaterials with Functional DNA., 2009,, 155-178.		5
420	Hydrogel porosity controlling DNA-directed immobilization of gold nanoparticles revealed by DNA melting and scanning helium ion microscopy. RSC Advances, 2012, 2, 2981.	1.7	5
421	Special Topic: Nanozyme-Based Analysis and Testing. Journal of Analysis and Testing, 2019, 3, 189-190.	2.5	5
422	Phosphorothioate DNA Mediated Sequence-Insensitive Etching and Ripening of Silver Nanoparticles. Frontiers in Chemistry, 2019, 7, 198.	1.8	5
423	Instantaneous Iodine-Assisted DNAzyme Cleavage of Phosphorothioate RNA. Biochemistry, 2019, 58, 422-429.	1.2	5
424	A high local DNA concentration for nucleating a DNA/Fe coordination shell on gold nanoparticles. Chemical Communications, 2020, 56, 4208-4211.	2.2	5
425	Promotion and inhibition of oxidase-like nanoceria and peroxidase-like iron oxide by arsenate and arsenite. Inorganic Chemistry Communication, 2021, 134, 108979.	1.8	5
426	A novel method for fabrication of paper-based microfluidic devices using BSA-ink. International Journal of Biological Macromolecules, 2021, 193, 1617-1622.	3.6	5
427	Citrate inhibition of cisplatin reaction with DNA studied using fluorescently labeled oligonucleotides: implication for selectivity towards guanine. Chemical Communications, 2013, 49, 9482.	2.2	4
428	Stabilization of Liposomes by Perfluorinated Compounds. ACS Omega, 2018, 3, 15353-15360.	1.6	4
429	Interactions between citrate-capped gold nanoparticles and polymersomes. Journal Physics D: Applied Physics, 2018, 51, 244001.	1.3	4
430	Probing Local Folding Allows Robust Metal Sensing Based on a Na + â€5pecific DNAzyme. ChemBioChem, 2019, 20, 2241-2247.	1.3	4
431	Interactions of the Cocaine and Quinine Aptamer with Gold Nanoparticles under the Dilute Biosensor and Concentrated NMR Conditions. Langmuir, 2021, 37, 11939-11947.	1.6	4
432	Zn ²⁺ â€Coordinationâ€Driven RNA Assembly with Retained Integrity and Biological Functions. Angewandte Chemie, 2021, 133, 23152-23158.	1.6	4

#	Article	IF	Citations
433	A Glucoseâ€Powered Activatable Nanozyme Breaking pH and H ₂ O ₂ Limitations for Treating Diabetic Infections. Angewandte Chemie, 2021, 133, 23726-23731.	1.6	4
434	In vitro selection and application of lanthanide-dependent DNAzymes. Methods in Enzymology, 2021, 651, 373-396.	0.4	4
435	Freezing DNA for Controlling Bio/nano Interfaces and Catalysis. General Chemistry, 2019, 5, 190008-190008.	0.6	4
436	Profiling Metal Oxides with Lipids: Magnetic Liposomal Nanoparticles Displaying DNA and Proteins. Angewandte Chemie, 2016, 128, 12242-12246.	1.6	3
437	Global Folding of a Na ⁺ ‧pecific DNAzyme Studied by FRET. ChemBioChem, 2019, 20, 385-393.	1.3	3
438	Sensing guanine and its derivatives: From molecular recognition to applications. Sensors and Actuators Reports, 2020, 2, 100020.	2.3	3
439	Selection of a self-cleaving ribozyme activated in a chemically and thermally denaturing environment. Chemical Communications, 2021, 57, 7641-7644.	2.2	3
440	DNAâ€Directed Seeded Synthesis of Gold Nanoparticles without Changing DNA Sequence. ChemNanoMat, 2022, 8, .	1.5	3
441	Nanoparticles/Dip Stick. Methods in Molecular Biology, 2009, 535, 223-239.	0.4	2
442	Liposomes for DNA Nanotechnology: Preparation, Properties, and Applications., 2013,, 57-76.		2
443	Freezingâ€Assisted Conjugation of Unmodified Diblock DNA to Hydrogel Nanoparticles and Monoliths for DNA and Hg ²⁺ Sensing. Angewandte Chemie, 2021, 133, 13095-13101.	1.6	2
444	Packing DNA on gold nanoparticles by dehydration. Matter, 2021, 4, 2585-2586.	5.0	2
445	Molecular Detection Using Nanozymes. Nanostructure Science and Technology, 2020, , 395-424.	0.1	2
446	Functional Nucleic Acid-Directed Assembly of Nanomaterials and Their Applications as Colorimetric and Fluorescent Sensors for Trace Contaminants in Water., 2009,, 427-446.		1
447	Immobilization of Fluorescent Aptamer Biosensors on Magnetic Microparticles and Its Potential Application for Ocean Sensing. Springer Protocols, 2012, , 151-168.	0.1	1
448	Preparing Selective by. Methods in Molecular Biology, 2021, 2359, 223-232.	0.4	1
449	Thioflavin T fluorescence and NMR spectroscopy suggesting a non-G-quadruplex structure for a sodium binding aptamer embedded in DNAzymes. Canadian Journal of Chemistry, 0, , 1-7.	0.6	1
450	Modulation of DNAzyme Activity via Butanol Dehydration. Chemistry - an Asian Journal, 2021, 16, 4062-4066.	1.7	1

#	Article	IF	Citations
451	Selection of DNA Aptamers for Sensing Uric Acid in Simulated Tears. Analysis & Sensing, 0, , .	1.1	1
452	Ultrasensitive Visual Fluorescence Detection of Heavy Metal Ions in Water Based on DNA-Functionalized Hydrogels. Springer Protocols, 2012, , 117-134.	0.1	0
453	Functional Nucleic Acid-Directed Assembly of Nanomaterials and Their Applications as Colorimetric and Fluorescent Sensors for Trace Contaminants in Water., 2014,, 73-92.		O
454	Frontispiece: Photosensitization of Molecular Oxygen on Graphene Oxide for Ultrasensitive Signal Amplification. Chemistry - A European Journal, 2018, 24, .	1.7	0
455	Frontispiece: Selection and Screening of DNA Aptamers for Inorganic Nanomaterials. Chemistry - A European Journal, 2018, 24, .	1.7	O
456	DNAzyme-Based Biosensors for Metal Ion Detection. , 2021, , 103-124.		0
457	Editorial preface of the special issue on "the progress and perspectives of biosensing research in North America― Biosensors and Bioelectronics, 2021, 194, 113578.	5.3	0
458	Frontispiz: A Glucoseâ€Powered Activatable Nanozyme Breaking pH and H ₂ O ₂ Limitations for Treating Diabetic Infections. Angewandte Chemie, 2021, 133, .	1.6	0
459	Frontispiece: A Glucoseâ€Powered Activatable Nanozyme Breaking pH and H ₂ O ₂ Limitations for Treating Diabetic Infections. Angewandte Chemie - International Edition, 2021, 60, .	7.2	0
460	DNA-Functionalized Gold Nanoparticles for Metabolite and Nucleic Acid Detection., 2013,, 121-139.		0
461	A Polymeric Nanobeacon for Monitoring the Fluctuation of Hydrogen Polysulfides During Fertilization and Embryonic Development. Angewandte Chemie, 0, , .	1.6	0
462	Sensing Metal Ions with Phosphorothioate-Modified DNAzymes. Methods in Molecular Biology, 2022, 2439, 277-289.	0.4	0