
Haci Ali Dondas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4397487/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biological properties and conformational studies of amphiphilic Pd(II) and Ni(II) complexes bearing functionalized aroylaminocarbo- <i>N</i> -thioylpyrrolinate units. Beilstein Journal of Organic Chemistry, 2021, 17, 2812-2821.	2.2	3
2	4-Amino-1,2,4-triazoles-3-thiones and 1,3,4-oxadiazoles-2-thiones·palladium(II) recoverable complexes as catalysts in the sustainable Suzuki-Miyaura cross-coupling reaction. Journal of Organometallic Chemistry, 2020, 923, 121353.	1.8	4
3	Synthesis, structure and bioactivity of a mononuclear octahedral [Prolinate2-Na(MeOH)4]â~'H+ complex. Inorganica Chimica Acta, 2020, 504, 119456.	2.4	3
4	Synthesis and biological evaluation of platinum complexes of highly functionalized aroylaminocarbo-N-thioyl prolinate containing tetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione moieties. Inorganica Chimica Acta, 2019, 498, 119154.	2.4	5
5	Recent Development in Palladium-Catalyzed Domino Reactions: Access to Materials and Biologically Important Carbo- and Heterocycles. Organometallics, 2019, 38, 1828-1867.	2.3	50
6	From Bioactive Pyrrolidino[3,4-c]pyrrolidines to more Bioactive Pyrrolidino[3,4-b]pyrrolidines via Ring-Opening/Ring-Closing Promoted by Sodium Methoxide. Synthesis, 2019, 51, 1565-1577.	2.3	8
7	Design and synthesis of novel 1,4-benzodiazepine surrogates as potential CCKA and CCKB antagonists via palladium-catalyzed three-component cascade reactions. Tetrahedron, 2018, 74, 6-11.	1.9	9
8	Study of the anti(myco)bacterial and antitumor activities of prolinate and N-amidocarbothiolprolinate derivatives based on fused tetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione, bearing an indole ring. Monatshefte Für Chemie, 2018, 149, 2253-2263.	1.8	8
9	Catalytic bimetalic [Pd(0)/Ag(I) Heck-1,3-dipolar cycloaddition cascade reactions accessing spiro-oxindoles. Concomitant in situ generation of azomethine ylides and dipolarophile. Tetrahedron, 2018, 74, 3564-3577.	1.9	13
10	Current Trends towards the Synthesis of Bioactive Heterocycles and Natural Products Using 1,3-Dipolar Cycloadditions (1,3-DC) with Azomethine Ylides. Synthesis, 2017, 49, 2819-2851.	2.3	125
11	Synthesis, characterization, crystal structure, and antituberculosis activity of some novel polysubstituted aminocarbothiol/thiohydantoin-pyrrolidine derivatives. Monatshefte Für Chemie, 2017, 148, 2173-2182.	1.8	10
12	Synthesis of highly functionalized 2-(pyrrolidin-1-yl)thiazole frameworks with interesting antibacterial and antimycobacterial activity. Tetrahedron, 2017, 73, 6718-6727.	1.9	19
13	Subcritical water oxidation of 6-aminopenicillanic acid and cloxacillin using H ₂ O ₂ , K ₂ S ₂ O ₈ , and O ₂ . Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2017, 52, 210-220.	1.7	21
14	Î ³ -Carboline AC190 analogues via palladium catalysed allene insertion stereo and regioselective 3- and 5-component cascades. Tetrahedron, 2016, 72, 1316-1329.	1.9	8
15	A facile palladium catalysed 3-component cascade route to functionalised isoquinolinones and isoquinolines. Chemical Communications, 2016, 52, 164-166.	4.1	15
16	Determination of Acid Dissociation Constants (pKa) of Bicyclic Thiohydantoin-Pyrrolidine Compounds in 20% Ethanol-Water Hydroorganic Solvent. International Journal of Analytical Chemistry, 2014, 2014, 1-6.	1.0	2
17	Carbophilic 3 omponent Cascades: Access to Complex Bioactive Cyclopropyl Diindolylmethanes. Chemistry - A European Journal, 2013, 19, 2180-2184.	3.3	23
18	Polysubstituted Fused Ring Bicyclic Thiohydantoins from Aminocarbo-N-thioylpyrrolidines Derived from Azomethine Ylide 1,3-Dipolar Cycloadditions. Heterocycles, 2011, 83, 2091.	0.7	8

HACI ALI DONDAS

#	Article	IF	CITATIONS
19	Diastereoselective synthesis of 6-functionalized 4-aryl-1,3-oxazinan-2-ones and their application in the synthesis of 3-aryl-1,3-aminoalcohols and 6-arylpiperidine-2,4-diones. Tetrahedron, 2010, 66, 4115-4124.	1.9	22
20	Synthesis of Ni(II), Pd(II) and Cu(II) metal complexes of novel highly functionalized aroylaminocarbo-N-thioyl pyrrolidines and their activity against fungi and yeast. Polyhedron, 2009, 28, 2847-2854.	2.2	18
21	X=Y–ZH compounds as potential 1,3-dipoles. Part 64: Synthesis of highly substituted conformationally restricted and spiro nitropyrrolidines via Ag(I) catalysed azomethine ylide cycloadditions. Tetrahedron, 2008, 64, 8974-8991.	1.9	36
22	Prevention of calcification with TPEN in pericardial bioprosthetic heart valve material. Anatolian Journal of Cardiology, 2007, 7, 365-70.	0.4	1
23	A sequence of electrophile induced cyclisation and concomitant N-deprotection of alkenylsulfinimines and alkenylsulfinamides as a direct route to cyclic or spirocyclic imines, pyrrolidines and piperidines. Tetrahedron Letters, 2005, 46, 4179-4182.	1.4	11
24	Δ3-Aryl/heteroaryl substituted heterocycles via sequential Pd-catalysed termolecular cascade/ring closing metathesis (RCM). Tetrahedron, 2005, 61, 10652-10666.	1.9	21
25	XYZH systems as potential 1,3-dipoles. Part 62: 1,3-Dipolar cycloaddition reactions of metallo-azomethine ylides derived from α-iminophosphonates. Tetrahedron, 2005, 61, 10667-10682.	1.9	30
26	Stereoselective Palladium-Catalyzed Four-Component Cascade Synthesis of Pyrrolidinyl-, Pyrazolidinyl-, and Isoxazolidinyl Isoquinolines. Angewandte Chemie - International Edition, 2005, 44, 7570-7574.	13.8	57
0.5			

HACI ALI DONDAS

#	Article	IF	CITATIONS
37	Synthesis of two and antibacterial activity of one novel oxime ether derivatives of erythromycin A. Il Farmaco, 2003, 58, 1011-1015.	0.9	2
38	N-Heterocycles from Oxime and Oxime O-Benzyl Ethers via Electrophile Induced - Ring Formation. Route to Cyclic and Bicyclic Amine and Hydroxylamine. Heterocyclic Communications, 2003, 9, .	1.2	7
39	X=Y–ZH Systems as potential 1,3-dipoles. Part 54: Stereo- and facially-selective formation of bridged bicyclic N-heterocycles via a sequential one-pot electrophile induced oxime→nitrone→cycloaddition sequence. Multiplication of chirality. Tetrahedron, 2002, 58, 5827-5836.	1.9	8
40	Stereoselective electrophile-induced mono- and bis-cyclisation–fragmentation reactions of alkenyl oxime O-allyl and O-benzyl ethers. Synthesis of dihydropinidine. Tetrahedron, 2002, 58, 161-173.	1.9	22
41	Synthesis of heterocycles via sequential Pd/Ru-catalysed allene insertion–nucleophile incorporation–olefin metathesis. Tetrahedron Letters, 2001, 42, 8673-8675.	1.4	33
42	XY–ZH Systems as potential 1,3-dipoles. Part 51: Halogen-induced inter- and intra-molecular formation of nitrones from oximes and alkenes. Tetrahedron, 2001, 57, 1119-1128.	1.9	57
43	X=Y–ZH Systems as potential 1,3-dipoles. Part 52: Fused-ring forming electrophile induced oxime→nitrone→cycloaddition cascades. Tetrahedron, 2001, 57, 7035-7045.	1.9	19
44	X=Y–ZH Systems as potential 1,3-dipoles. Part 53: Sequential nucleophilic ring opening-1,3-dipolar cycloaddition reactions of Z-oxime anions with aziridines and dipolarophiles. Tetrahedron, 2001, 57, 7951-7964.	1.9	31
45	Palladium catalysed reaction of allene with phenols. Phenoxymethyl-1,3-dienes and their further reactions. Tetrahedron, 2001, 57, 7965-7978.	1.9	27
46	Palladium catalysed reactions of allene with active methylene pronucleophiles. C-1,3-Dienylmethyl derivatives and their Diels–Alder reactions. Tetrahedron, 2001, 57, 9187-9197.	1.9	23
47	Sequential 1,3-Dipolar Cycloaddition-Pictet–Spengler Reactions. A Versatile Tactical Combination. Tetrahedron, 2000, 56, 4063-4070.	1.9	27
48	XY–ZH Systems as Potential 1,3-Dipoles. Part 50: Phenylselenyl Halide Induced Formation of Cyclic Nitrones from Alkenyl Oximes. Tetrahedron, 2000, 56, 10087-10096.	1.9	40
49	Solid phase sequential 1,3-dipolar cycloaddition–Pictet–Spengler reactions. Tetrahedron Letters, 2000, 41, 967-970.	1.4	49
50	Thermal behaviour of some spiro benzodiazepine derivatives. Thermochimica Acta, 2000, 354, 107-115.	2.7	2
51	X=Y-ZH systems as potential 1,3-dipoles. Part 47.1 tandem nucleophilic substitution-1,3 dipolar cycloaddition reactions of oximes with epoxides and dipolarophiles. Tetrahedron, 1997, 53, 13165-13176.	1.9	35
52	X=Y-ZH systems as potential 1,3-dipoles. Part 48. Enantiopure cycloadducts from oxime-nitrone-isoxazolidine cascades. Tetrahedron, 1997, 53, 14339-14354.	1.9	27
53	Spiro- and bridged-ring forming electrophile induced → oxime → nitrone cycloaddition cascades. Multiplication of chirality. Tetrahedron Letters, 1997, 38, 5719-5722.	1.4	18
54	Spiro(pyrrolidinyl-2,3′-benzodiazepines) related to MK-329. Tetrahedron, 1996, 52, 13455-13466.	1.9	23

#	Article	IF	CITATIONS
55	Photocatalytic Homocoupling Transformations. Synthesis, 0, 53, .	2.3	1