
S W Bougher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4396282/publications.pdf Version: 2024-02-01

S W/ ROUCHER

#	Article	IF	CITATIONS
1	The Mars Atmosphere and Volatile Evolution (MAVEN) Mission. Space Science Reviews, 2015, 195, 3-48.	8.1	563
2	Comparative terrestrial planet thermospheres: 3. Solar cycle variation of global structure and winds at solstices. Journal of Geophysical Research, 2000, 105, 17669-17692.	3.3	235
3	The Structure of the Upper Atmosphere of Mars: In Situ Accelerometer Measurements from Mars Global Surveyor. Science, 1998, 279, 1672-1676.	12.6	234
4	Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus, 2018, 315, 146-157.	2.5	216
5	Comparative terrestrial planet thermospheres: 2. Solar cycle variation of global structure and winds at equinox. Journal of Geophysical Research, 1999, 104, 16591-16611.	3.3	215
6	Mars Global Ionosphereâ€Thermosphere Model: Solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere. Journal of Geophysical Research E: Planets, 2015, 120, 311-342.	3.6	210
7	Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation. Geophysical Research Letters, 2015, 42, 8951-8957.	4.0	168
8	MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science, 2015, 350, aad0210.	12.6	166
9	Mars Global Surveyor radio science electron density profiles : Neutral atmosphere implications. Geophysical Research Letters, 2001, 28, 3091-3094.	4.0	154
10	On the origin of aurorae on Mars. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	139
11	MGS Radio Science electron density profiles: Interannual variability and implications for the Martian neutral atmosphere. Journal of Geophysical Research, 2004, 109, .	3.3	132
12	The structure and variability of Mars dayside thermosphere from MAVEN NGIMS and IUVS measurements: Seasonal and solar activity trends in scale heights and temperatures. Journal of Geophysical Research: Space Physics, 2017, 122, 1296-1313.	2.4	124
13	Polar warming in the Mars thermosphere: Seasonal variations owing to changing insolation and dust distributions. Geophysical Research Letters, 2006, 33, .	4.0	121
14	The Mars thermosphere: 2. General circulation with coupled dynamics and composition. Journal of Geophysical Research, 1990, 95, 14811-14827.	3.3	118
15	The MAVEN EUVM model of solar spectral irradiance variability at Mars: Algorithms and results. Journal of Geophysical Research: Space Physics, 2017, 122, 2748-2767.	2.4	116
16	The spatial distribution of planetary ion fluxes near Mars observed by MAVEN. Geophysical Research Letters, 2015, 42, 9142-9148.	4.0	115
17	Morphology of the Venus ultraviolet night airglow. Journal of Geophysical Research, 1980, 85, 7861-7870.	3.3	113
18	The effects of topographically-controlled thermal tides in the martian upper atmosphere as seen by the MGS accelerometer. Icarus, 2003, 164, 14-32.	2.5	109

#	Article	IF	CITATIONS
19	A comparison of global models for the solar wind interaction with Mars. Icarus, 2010, 206, 139-151.	2.5	108
20	An improved crustal magnetic field map of Mars from electron reflectometry: Highland volcano magmatic history and the end of the martian dynamo. Icarus, 2008, 194, 575-596.	2.5	106
21	Photochemical escape of oxygen from Mars: First results from MAVEN in situ data. Journal of Geophysical Research: Space Physics, 2017, 122, 3815-3836.	2.4	106
22	The ancient oxygen exosphere of Mars: Implications for atmosphere evolution. Journal of Geophysical Research, 1993, 98, 10915-10923.	3.3	104
23	Characterizing Atmospheric Escape from Mars Today and Through Time, with MAVEN. Space Science Reviews, 2015, 195, 357-422.	8.1	99
24	Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability. Science, 2015, 350, aad0459.	12.6	90
25	The Venus nitric oxide night airglow: Model calculations based on the Venus thermospheric general circulation model. Journal of Geophysical Research, 1990, 95, 6271-6284.	3.3	88
26	Nonmigrating tides in the thermosphere of Mars. Journal of Geophysical Research, 2002, 107, 23-1-23-12.	3.3	88
27	Nightside ionosphere of Mars: Modeling the effects of crustal magnetic fields and electron pitch angle distributions on electron impact ionization. Journal of Geophysical Research, 2009, 114, .	3.3	88
28	Venus mesosphere and thermosphere. Icarus, 1988, 73, 545-573.	2.5	86
29	Solar cycle variability of Mars dayside exospheric temperatures: Model evaluation of underlying thermal balances. Geophysical Research Letters, 2009, 36, .	4.0	86
30	Neutral Upper Atmosphere and Ionosphere Modeling. Space Science Reviews, 2008, 139, 107-141.	8.1	85
31	Prediction of a CO22+layer in the atmosphere of Mars. Geophysical Research Letters, 2002, 29, 104-1-104-4.	4.0	83
32	Atomic oxygen in the Martian thermosphere. Journal of Geophysical Research, 1992, 97, 91-102.	3.3	79
33	Global Circulation, Thermal Structure, and Carbon Monoxide Distribution in Venus' Mesosphere in 1991. Icarus, 1994, 110, 315-339.	2.5	76
34	Cross Sections and Reaction Rates for Comparative Planetary Aeronomy. Space Science Reviews, 2008, 139, 63-105.	8.1	74
35	Solar wind interaction with Mars upper atmosphere: Results from the oneâ€way coupling between the multifluid MHD model and the MTGCM model. Geophysical Research Letters, 2014, 41, 2708-2715.	4.0	71
36	Jupiter Thermospheric General Circulation Model (JTGCM): Global structure and dynamics driven by auroral and Joule heating. Journal of Geophysical Research, 2005, 110, .	3.3	69

#	Article	IF	CITATIONS
37	Monte Carlo model of electron transport for the calculation of Mars dayglow emissions. Journal of Geophysical Research, 2008, 113, .	3.3	68
38	A study of suprathermal oxygen atoms in Mars upper thermosphere and exosphere over the range of limiting conditions. Icarus, 2010, 206, 18-27.	2.5	67
39	Dynamics of the Venus upper atmosphere: Outstanding problems and new constraints expected from Venus Express. Planetary and Space Science, 2006, 54, 1371-1380.	1.7	66
40	CO2cooling in terrestrial planet thermospheres. Journal of Geophysical Research, 1994, 99, 14609.	3.3	65
41	Mars Global Surveyor aerobraking: Atmospheric trends and model interpretation. Advances in Space Research, 1999, 23, 1887-1897.	2.6	64
42	Comparative terrestrial planet thermospheres: 1. Solar cycle variation of global mean temperatures. Journal of Geophysical Research, 1991, 96, 11045-11055.	3.3	63
43	The Aeronomy of Mars: Characterization by MAVEN of the Upper Atmosphere Reservoir That Regulates Volatile Escape. Space Science Reviews, 2015, 195, 423-456.	8.1	63
44	Venus O2visible and IR nightglow: Implications for lower thermosphere dynamics and chemistry. Journal of Geophysical Research, 1994, 99, 3759.	3.3	61
45	Venus mesosphere and thermosphere. Icarus, 1986, 68, 284-312.	2.5	60
46	Threeâ€dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 2. Solar cycle, seasonal variations, and evolution over history. Journal of Geophysical Research, 2009, 114, .	3.3	60
47	Mars thermosphere as seen in MAVEN accelerometer data. Journal of Geophysical Research: Space Physics, 2017, 122, 3798-3814.	2.4	60
48	Vertical dust mixing and the interannual variations in the Mars thermosphere. Journal of Geophysical Research, 2007, 112, .	3.3	58
49	Understanding the variability of nightside temperatures, NO UV and O ₂ IR nightglow emissions in the Venus upper atmosphere. Journal of Geophysical Research, 2011, 116, .	3.3	57
50	Numerical interpretation of high-altitude photoelectron observations. Icarus, 2006, 182, 383-395.	2.5	56
51	Threeâ€dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 1. General description and results at equinox for solar low conditions. Journal of Geophysical Research, 2009, 114, .	3.3	56
52	Mars-GRAM 2000: A Mars atmospheric model for engineering applications. Advances in Space Research, 2002, 29, 193-202.	2.6	54
53	Localized ionization patches in the nighttime ionosphere of Mars and their electrodynamic consequences. Icarus, 2010, 206, 112-119.	2.5	54
54	Multifluid MHD study of the solar wind interaction with Mars' upper atmosphere during the 2015 March 8th ICME event. Geophysical Research Letters, 2015, 42, 9103-9112.	4.0	54

#	Article	IF	CITATIONS
55	Deep nightside photoelectron observations by MAVEN SWEA: Implications for Martian northern hemispheric magnetic topology and nightside ionosphere source. Geophysical Research Letters, 2016, 43, 8876-8884.	4.0	54
56	He bulge revealed: He and CO ₂ diurnal and seasonal variations in the upper atmosphere of Mars as detected by MAVEN NGIMS. Journal of Geophysical Research: Space Physics, 2017, 122, 2564-2573.	2.4	52
57	Solar wind interaction with the Martian upper atmosphere: Crustal field orientation, solar cycle, and seasonal variations. Journal of Geophysical Research: Space Physics, 2015, 120, 7857-7872.	2.4	51
58	Modeling Martian Atmospheric Losses over Time: Implications for Exoplanetary Climate Evolution and Habitability. Astrophysical Journal Letters, 2018, 859, L14.	8.3	51
59	Simulating the density and thermal structure of the middle atmosphere (â^¼80–130km) of Mars using the MGCM–MTGCM: A comparison with MEX/SPICAM observations. Icarus, 2010, 206, 5-17.	2.5	50
60	Venus mesosphere and thermosphere: 1. Heat budget and thermal structure. Journal of Geophysical Research, 1986, 91, 70-80.	3.3	49
61	Model calculations of electron precipitation induced ionization patches on the nightside of Mars. Geophysical Research Letters, 2007, 34, .	4.0	47
62	Distribution of sulphuric acid aerosols in the clouds and upper haze of Venus using Venus Express VAST and VeRa temperature profiles. Planetary and Space Science, 2015, 113-114, 205-218.	1.7	47
63	The importance of pickup oxygen ion precipitation to the Mars upper atmosphere under extreme solar wind conditions. Geophysical Research Letters, 2013, 40, 1922-1927.	4.0	45
64	Mars mesosphere and thermosphere: 1. Global mean heat budget and thermal structure. Journal of Geophysical Research, 1988, 93, 7325-7337.	3.3	44
65	Retrieval of CO ₂ and N ₂ in the Martian thermosphere using dayglow observations by IUVS on MAVEN. Geophysical Research Letters, 2015, 42, 9040-9049.	4.0	43
66	Probing the Martian atmosphere with MAVEN/IUVS stellar occultations. Geophysical Research Letters, 2015, 42, 9064-9070.	4.0	42
67	First absolute wind measurements in the middle atmosphere of Mars. Astrophysical Journal, 1991, 383, 401.	4.5	42
68	Dust storm impacts on the Mars upper atmosphere. Advances in Space Research, 1997, 19, 1255-1260.	2.6	41
69	Application of Acclerometer Data to Atmospheric Modeling During Mars Aerobraking Operations. Journal of Spacecraft and Rockets, 2007, 44, 1172-1179.	1.9	41
70	New observations of molecular nitrogen in the Martian upper atmosphere by IUVS on MAVEN. Geophysical Research Letters, 2015, 42, 9050-9056.	4.0	41
71	Carbon monoxide and temperature in the upper atmosphere of Venus from VIRTIS/Venus Express non-LTE limb measurements. Icarus, 2015, 248, 478-498.	2.5	41
72	Water loss and evolution of the upper atmosphere and exosphere over martian history. Icarus, 2010, 206, 28-39.	2.5	40

#	Article	IF	CITATIONS
73	Hot oxygen escape from Mars: Simple scaling with solar EUV irradiance. Journal of Geophysical Research: Space Physics, 2017, 122, 1102-1116.	2.4	40
74	The altitude distribution of the Venus ultraviolet nightglow and implications on vertical transport. Geophysical Research Letters, 1981, 8, 633-636.	4.0	39
75	Mars thermospheric general circulation model: Calculations for the arrival of Phobos at Mars. Geophysical Research Letters, 1988, 15, 1511-1514.	4.0	39
76	Isolation of major Venus thermospheric cooling mechanism and implications for Earth and Mars. Journal of Geophysical Research, 1992, 97, 4189-4197.	3.3	39
77	Dayside thermal structure of Venus' upper atmosphere characterized by a global model. Journal of Geophysical Research, 2012, 117, .	3.3	39
78	Developing a selfâ€consistent description of Titan's upper atmosphere without hydrodynamic escape. Journal of Geophysical Research: Space Physics, 2014, 119, 4957-4972.	2.4	38
79	Hot oxygen corona at Mars and the photochemical escape of oxygen: Improved description of the thermosphere, ionosphere, and exosphere. Journal of Geophysical Research E: Planets, 2015, 120, 1880-1892.	3.6	38
80	Electron energetics in the Martian dayside ionosphere: Model comparisons with MAVEN data. Journal of Geophysical Research: Space Physics, 2016, 121, 7049-7066.	2.4	38
81	Structural and Compositional Changes in the Upper Atmosphere Related to the PEDEâ€2018 Dust Event on Mars as Observed by MAVEN NGIMS. Geophysical Research Letters, 2020, 47, e2019GL084378.	4.0	38
82	Mars mesosphere and thermosphere coupling: Semidiurnal tides. Journal of Geophysical Research, 1993, 98, 3281-3295.	3.3	36
83	Nitric oxide nightglow and Martian mesospheric circulation from MAVEN/IUVS observations and LMDâ€MGCM predictions. Journal of Geophysical Research: Space Physics, 2017, 122, 5782-5797.	2.4	36
84	A two-dimensional MHD model of the solar wind interaction with Mars. Earth, Planets and Space, 1999, 51, 55-60.	2.5	35
85	The ionospheres–thermospheres of the giant planets. Advances in Space Research, 2004, 33, 197-211.	2.6	35
86	A comparison of 3â€Ð model predictions of Mars' oxygen corona with early MAVEN IUVS observations. Geophysical Research Letters, 2015, 42, 9015-9022.	4.0	35
87	Simulating the oneâ€dimensional structure of Titan's upper atmosphere: 1. Formulation of the Titan Global Ionosphereâ€Thermosphere Model and benchmark simulations. Journal of Geophysical Research, 2010, 115, .	3.3	34
88	Pressure and ion composition boundaries at Mars. Journal of Geophysical Research: Space Physics, 2016, 121, 6417-6429.	2.4	34
89	Martian Thermospheric Warming Associated With the Planet Encircling Dust Event of 2018. Geophysical Research Letters, 2020, 47, e2019GL085302.	4.0	34
90	The impact of gravity waves on the Venus thermosphere and O2IR nightglow. Journal of Geophysical Research, 1996, 101, 23195-23205.	3.3	33

#	Article	IF	CITATIONS
91	Simulations of the Upper atmospheres of the terrestrial planets. Geophysical Monograph Series, 2002, , 261-288.	0.1	33
92	Photoelectrons and solar ionizing radiation at Mars: Predictions versus MAVEN observations. Journal of Geophysical Research: Space Physics, 2016, 121, 8859-8870.	2.4	33
93	Upper Neutral Atmosphere and Ionosphere. , 2017, , 433-463.		33
94	Aeronomy of the Venus Upper Atmosphere. Space Science Reviews, 2017, 212, 1617-1683.	8.1	33
95	Atomic oxygen distributions in the Venus thermosphere: Comparisons between Venus Express observations and global model simulations. Icarus, 2012, 217, 759-766.	2.5	30
96	Observations and Modeling of the Mars Lowâ€Altitude Ionospheric Response to the 10 September 2017 Xâ€Class Solar Flare. Geophysical Research Letters, 2018, 45, 7382-7390.	4.0	30
97	Mars thermospheric scale height: CO Cameron and CO2+ dayglow observations from Mars Express. Icarus, 2015, 245, 295-305.	2.5	29
98	Model insights into energetic photoelectrons measured at Mars by MAVEN. Geophysical Research Letters, 2015, 42, 8894-8900.	4.0	28
99	Martian highâ€altitude photoelectrons independent of solar zenith angle. Journal of Geophysical Research: Space Physics, 2016, 121, 3767-3780.	2.4	28
100	Neutral Atmospheres. Space Science Reviews, 2008, 139, 191-234.	8.1	27
101	Simulating the oneâ€dimensional structure of Titan's upper atmosphere: 2. Alternative scenarios for methane escape. Journal of Geophysical Research, 2010, 115, .	3.3	27
102	Importance of Ambipolar Electric Field in Driving Ion Loss From Mars: Results From a Multifluid MHD Model With the Electron Pressure Equation Included. Journal of Geophysical Research: Space Physics, 2019, 124, 9040-9057.	2.4	27
103	Local time asymmetries in the Venus thermosphere. Journal of Geophysical Research, 1993, 98, 10849-10871.	3.3	26
104	Application of MAVEN Accelerometer and Attitude Control Data to Mars Atmospheric Characterization. Space Science Reviews, 2015, 195, 303-317.	8.1	26
105	Mars Thermospheric Variability Revealed by MAVEN EUVM Solar Occultations: Structure at Aphelion and Perihelion and Response to EUV Forcing. Journal of Geophysical Research E: Planets, 2018, 123, 2248-2269.	3.6	26
106	Heating Titan's upper atmosphere. Journal of Geophysical Research, 2008, 113, .	3.3	25
107	Enhanced carbon dioxide causing the dust stormâ€related increase in highâ€altitude photoelectron fluxes at Mars. Geophysical Research Letters, 2015, 42, 9702-9710.	4.0	25
108	Comparison of model predictions for the composition of the ionosphere of Mars to MAVEN NGIMS data. Geophysical Research Letters, 2015, 42, 8966-8976.	4.0	25

#	Article	IF	CITATIONS
109	Thermal and wind structure of the Martian thermosphere as given by two General Circulation Models. Planetary and Space Science, 2010, 58, 1832-1849.	1.7	24
110	Simulating the one-dimensional structure of Titan's upper atmosphere: 3. Mechanisms determining methane escape. Journal of Geophysical Research, 2011, 116, .	3.3	24
111	Estimates of Ionospheric Transport and Ion Loss at Mars. Journal of Geophysical Research: Space Physics, 2017, 122, 10,626.	2.4	24
112	Mars ultraviolet dayglow variability: SPICAM observations and comparison with airglow model. Journal of Geophysical Research, 2010, 115, .	3.3	23
113	On wind-driven electrojets at magnetic cusps in the nightside ionosphere of Mars. Earth, Planets and Space, 2012, 64, 93-103.	2.5	23
114	Pickup ion measurements by MAVEN: A diagnostic of photochemical oxygen escape from Mars. Geophysical Research Letters, 2014, 41, 4812-4818.	4.0	23
115	Mars Dust Storm Effects in the Ionosphere and Magnetosphere and Implications for Atmospheric Carbon Loss. Journal of Geophysical Research: Space Physics, 2020, 125, no.	2.4	23
116	Venus atmosphere dynamics: A continuing enigma. Geophysical Monograph Series, 2007, , 101-120.	0.1	22
117	Incorporation of a gravity wave momentum deposition parameterization into the Venus Thermosphere General Circulation Model (VTGCM). Journal of Geophysical Research E: Planets, 2013, 118, 147-160.	3.6	22
118	Ionospheric loss from Mars as predicted by hybrid particle simulations. Journal of Geophysical Research: Space Physics, 2016, 121, 10,190.	2.4	22
119	Test particle comparison of heavy atomic and molecular ion distributions at Mars. Journal of Geophysical Research: Space Physics, 2014, 119, 2328-2344.	2.4	21
120	Neutral composition measurements by the Pioneer Venus Neutral Mass Spectrometer during Orbiter reâ€entry. Geophysical Research Letters, 1993, 20, 2747-2750.	4.0	20
121	Waveâ€like perturbations observed at low altitudes by the Pioneer Venus Orbiter Neutral Mass Spectrometer during orbiter entry. Geophysical Research Letters, 1993, 20, 2755-2758.	4.0	20
122	Comparative thermospheres: Venus and Mars. Advances in Space Research, 1995, 15, 21-45.	2.6	20
123	MAVEN/NGIMS Thermospheric Neutral Wind Observations: Interpretation Using the Mâ€GITM General Circulation Model. Journal of Geophysical Research E: Planets, 2019, 124, 3283-3303.	3.6	20
124	Global circulation of Mars' upper atmosphere. Science, 2019, 366, 1363-1366.	12.6	20
125	Probing upper thermospheric neutral densities at Mars using electron reflectometry. Geophysical Research Letters, 2005, 32, .	4.0	19
126	Continuous monitoring of nightside upper thermospheric mass densities in the martian southern hemisphere over 4 martian years using electron reflectometry. Icarus, 2008, 194, 562-574.	2.5	19

#	Article	IF	CITATIONS
127	Modeled O ₂ nightglow distributions in the Venusian atmosphere. Journal of Geophysical Research, 2012, 117, .	3.3	19
128	Hot carbon corona in Mars' upper thermosphere and exosphere: 1. Mechanisms and structure of the hot corona for low solar activity at equinox. Journal of Geophysical Research E: Planets, 2014, 119, 905-924.	3.6	19
129	Thermal Structure and Composition. , 2017, , 42-75.		19
130	Effects of a Solar Flare on the Martian Hot O Corona and Photochemical Escape. Geophysical Research Letters, 2018, 45, 6814-6822.	4.0	19
131	Mars Upper Atmospheric Responses to the 10 September 2017 Solar Flare: A Global, Timeâ€Dependent Simulation. Geophysical Research Letters, 2019, 46, 9334-9343.	4.0	19
132	Processes of auroral thermal structure at Jupiter: Analysis of multispectral temperature observations with the Jupiter Thermosphere General Circulation Model. Journal of Geophysical Research, 2009, 114, .	3.3	18
133	Spectro-imaging observations of Jupiter's 2μ m auroral emission. II: Thermospheric winds. Icarus, 2011, 211, 1233-1241.	2.5	18
134	Solar Wind Interaction and Atmospheric Escape. , 2017, , 464-496.		18
135	Radiative cooling in the NLTE region of the mesosphere and lower thermosphere—Global energy balance. Advances in Space Research, 1987, 7, 5-15.	2.6	17
136	Neutral upper atmospheres of Venus and Mars. Advances in Space Research, 1987, 7, 57-71.	2.6	17
137	Processes of equatorial thermal structure at Jupiter: An analysis of the Galileo temperature profile with a three-dimensional model. Journal of Geophysical Research, 2005, 110, .	3.3	17
138	Modeling photoelectron transport in the Martian ionosphere at Olympus Mons and Syrtis Major: MGS observations. Journal of Geophysical Research, 2010, 115, .	3.3	17
139	Ionospheric control of the dawnâ€dusk asymmetry of the Mars magnetotail current sheet. Journal of Geophysical Research: Space Physics, 2017, 122, 6397-6414.	2.4	17
140	Time-history influence of global dust storms on the upper atmosphere at Mars. Geophysical Research Letters, 2012, 39, n/a-n/a.	4.0	16
141	Characterization of middleâ€atmosphere polar warming at Mars. Journal of Geophysical Research E: Planets, 2013, 118, 161-178.	3.6	16
142	Zonal Wind Calculations from Mars Global Surveyor Accelerometer and Rate Data. Journal of Spacecraft and Rockets, 2007, 44, 1180-1187.	1.9	15
143	Four Martian years of nightside upper thermospheric mass densities derived from electron reflectometry: Method extension and comparison with GCM simulations. Journal of Geophysical Research, 2010, 115, .	3.3	15
144	Comparison of Global Martian Plasma Models in the Context of MAVEN Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 3714-3726.	2.4	15

#	Article	IF	CITATIONS
145	Effects of Global and Regional Dust Storms on the Martian Hot O Corona and Photochemical Loss. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027115.	2.4	15
146	Solar Wind Interaction With the Martian Upper Atmosphere: Roles of the Cold Thermosphere and Hot Oxygen Corona. Journal of Geophysical Research: Space Physics, 2018, 123, 6639-6654.	2.4	14
147	Tidal Wave-Driven Variability in the Mars Ionosphere-Thermosphere System. Atmosphere, 2020, 11, 521.	2.3	14
148	Imaging of Martian Circulation Patterns and Atmospheric Tides Through MAVEN/IUVS Nightglow Observations. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027318.	2.4	13
149	AERONOMY OF THE CURRENT MARTIAN ATMOSPHERE. , 0, , 1054-1089.		13
150	A twoâ€dimensional model of the nightside ionosphere of Venus: Ion energetics. Journal of Geophysical Research, 1984, 89, 3837-3842.	3.3	12
151	The Planet-B neutral gas mass spectrometer. Earth, Planets and Space, 1998, 50, 785-792.	2.5	12
152	Kelvin wave propagation in the upper atmospheres of Mars and Earth. Advances in Space Research, 2001, 27, 1791-1800.	2.6	12
153	Hot carbon corona in Mars' upper thermosphere and exosphere: 2. Solar cycle and seasonal variability. Journal of Geophysical Research E: Planets, 2014, 119, 2487-2509.	3.6	12
154	Tidal Effects on the Longitudinal Structures of the Martian Thermosphere and Topside Ionosphere Observed by MAVEN. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028562.	2.4	12
155	The Mars thermosphere-ionosphere: Predictions for the arrival of Planet-B. Earth, Planets and Space, 1998, 50, 247-257.	2.5	10
156	A Monte Carlo model of crustal field influences on solar energetic particle precipitation into the Martian atmosphere. Journal of Geophysical Research: Space Physics, 2017, 122, 5653-5669.	2.4	10
157	Latitudinal and Seasonal Asymmetries of the Helium Bulge in the Martian Upper Atmosphere. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006976.	3.6	8
158	First Evidence of Persistent Nighttime Temperature Structures in the Neutral Thermosphere of Mars. Geophysical Research Letters, 2018, 45, 8819-8825.	4.0	7
159	TERMOPAC/ADIP : A generic package for long-term monitoring of the Martian thermosphere. Advances in Space Research, 2002, 29, 203-208.	2.6	6
160	Simulations of atmospheric phenomena at the Phoenix landing site with the Ames General Circulation Model. Journal of Geophysical Research, 2010, 115, .	3.3	6
161	Global response of the upper thermospheric winds to large ion drifts in the Jovian ovals. Journal of Geophysical Research: Space Physics, 2016, 121, 4647-4667.	2.4	6
162	MOSAIC: A Satellite Constellation to Enable Groundbreaking Mars Climate System Science and Prepare for Human Exploration. Planetary Science Journal, 2021, 2, 211.	3.6	6

#	Article	IF	CITATIONS
163	Structure, Luminosity, and Dynamics of the Venus Thermosphere. , 1991, , 357-489.		5
164	Solar Cycle and Seasonal Variability of the Martian Thermosphere-Ionosphere and Associated Impacts upon Atmospheric Escape. SAE International Journal of Aerospace, 0, 4, 227-237.	4.0	5
165	Multispecies and Multifluid MHD Approaches for the Study of Ionospheric Escape at Mars. Journal of Geophysical Research: Space Physics, 2018, 123, 7370-7383.	2.4	5
166	Scientific objectives of the DYNAMO mission. Advances in Space Research, 2001, 27, 1851-1860.	2.6	4
167	Venus thermospheric response to short-term solar variations. Advances in Space Research, 1992, 12, 111-128.	2.6	3
168	CO2 cooling in terrestrial planet thermospheres. Earth, Moon and Planets, 1994, 67, 31-33.	0.6	3
169	DYNAMO: a Mars upper atmosphere package for investigating solar wind interaction and escape processes, and mapping Martian fields. Advances in Space Research, 2004, 33, 2228-2235.	2.6	3
170	Planetaryâ€Scale Wave Impacts on the Venusian Upper Mesosphere and Lower Thermosphere. Journal of Geophysical Research E: Planets, 2021, 126, .	3.6	3
171	Thermosphere. , 1997, , 819-825.		3
172	Prediction of the structure of the martian upper atmosphere for the Mars Reconnaissance Orbiter (MRO) mission. Mars the International Journal of Mars Science and Exploration, 0, , .	0.8	3
173	A 3D Physicsâ€Based Particle Model of the Venus Oxygen Corona: Variations With Solar Activity. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	3
174	Calculation of Zonal Winds Using Accelerometer and Rate Data from Mars Global Surveyor. , 2006, , .		2
175	Aeronomy of terrestrial upper atmospheres. , 0, , 201-225.		2
176	Cross Sections and Reaction Rates for Comparative Planetary Aeronomy. Space Sciences Series of ISSI, 2008, , 63-105.	0.0	2
177	Martian nonmigrating atmospheric tides in the thermosphere and ionosphere at solar minimum. Icarus, 2023, 393, 114767.	2.5	2
178	MAVEN/NGIMS wind observations in the martian thermosphere during the 2018 planet encircling dust event. Icarus, 2022, 382, 115006.	2.5	2
179	Application of MGS and ODY Aerobraking Accelerometer Data to Atmospheric Modeling. , 2006, , .		1
180	Neutral Upper Atmosphere and Ionosphere Modeling. Space Sciences Series of ISSI, 2008, , 107-141.	0.0	1

#	Article	IF	CITATIONS
181	Neutral Atmospheres. Space Sciences Series of ISSI, 2008, , 191-234.	0.0	1
182	Effect of Dust Storm and GCR Impact on the Production Rate of O 3 + in MY 28 and MY 29: Modeling and SPICAM Observation. Journal of Geophysical Research: Space Physics, 2019, 124, 2271-2282.	2.4	1
183	Observations and Modeling of Martian Auroras. Space Science Reviews, 2022, 218, .	8.1	1
184	Introduction to the Venus II special section. Journal of Geophysical Research, 1996, 101, 4523-4524.	3.3	0