Pratiti Bandopadhayay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4394943/publications.pdf

Version: 2024-02-01

57 papers 3,570 citations

218677 26 h-index 377865 34 g-index

58 all docs 58 docs citations

58 times ranked 6574 citing authors

#	Article	IF	CITATIONS
1	Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science, 2018, 360, 331-335.	12.6	461
2	Mechanisms and therapeutic implications of hypermutation in gliomas. Nature, 2020, 580, 517-523.	27.8	374
3	Longitudinal molecular trajectories of diffuse glioma in adults. Nature, 2019, 576, 112-120.	27.8	320
4	BET Bromodomain Inhibition of <i>MYC</i> -Amplified Medulloblastoma. Clinical Cancer Research, 2014, 20, 912-925.	7.0	296
5	Treatment-Induced Tumor Dormancy through YAP-Mediated Transcriptional Reprogramming of the Apoptotic Pathway. Cancer Cell, 2020, 37, 104-122.e12.	16.8	267
6	Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition. Nature Medicine, 2014, 20, 732-740.	30.7	255
7	Longâ€term outcome of 4,040 children diagnosed with pediatric lowâ€grade gliomas: An analysis of the Surveillance Epidemiology and End Results (SEER) database. Pediatric Blood and Cancer, 2014, 61, 1173-1179.	1.5	210
8	An in-tumor genetic screen reveals that the BET bromodomain protein, BRD4, is a potential therapeutic target in ovarian carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 232-237.	7.1	136
9	Pediatric low-grade gliomas: next biologically driven steps. Neuro-Oncology, 2018, 20, 160-173.	1.2	116
10	Clinical and treatment factors determining longâ€term outcomes for adult survivors of childhood lowâ€grade glioma: A populationâ€based study. Cancer, 2016, 122, 1261-1269.	4.1	109
11	Histone H3.3G34-Mutant Interneuron Progenitors Co-opt PDGFRA for Gliomagenesis. Cell, 2020, 183, 1617-1633.e22.	28.9	93
12	Management of pediatric low-grade glioma. Current Opinion in Pediatrics, 2019, 31, 21-27.	2.0	87
13	Towards Immunotherapy for Pediatric Brain Tumors. Trends in Immunology, 2019, 40, 748-761.	6.8	77
14	A first-generation pediatric cancer dependency map. Nature Genetics, 2021, 53, 529-538.	21.4	76
15	Pediatric low-grade gliomas: implications of the biologic era. Neuro-Oncology, 2017, 19, now209.	1.2	73
16	Rethinking childhood ependymoma: a retrospective, multi-center analysis reveals poor long-term overall survival. Journal of Neuro-Oncology, 2017, 135, 201-211.	2.9	72
17	Resistance to Epigenetic-Targeted Therapy Engenders Tumor Cell Vulnerabilities Associated with Enhancer Remodeling. Cancer Cell, 2018, 34, 922-938.e7.	16.8	63
18	Dual HDAC and PI3K Inhibition Abrogates NFκB- and FOXM1-Mediated DNA Damage Response to Radiosensitize Pediatric High-Grade Gliomas. Cancer Research, 2018, 78, 4007-4021.	0.9	60

#	Article	IF	CITATIONS
19	Clinical targeted exome-based sequencing in combination with genome-wide copy number profiling: precision medicine analysis of 203 pediatric brain tumors. Neuro-Oncology, 2017, 19, now294.	1.2	54
20	Pediatric low-grade gliomas: How modern biology reshapes the clinical field. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1845, 294-307.	7.4	45
21	Mitogenic and progenitor gene programmes in single pilocytic astrocytoma cells. Nature Communications, 2019, 10, 3731.	12.8	45
22	Immunophenotyping of pediatric brain tumors: correlating immune infiltrate with histology, mutational load, and survival and assessing clonal T cell response. Journal of Neuro-Oncology, 2018, 137, 269-278.	2.9	42
23	Expression profiles of 151 pediatric low-grade gliomas reveal molecular differences associated with location and histological subtype. Neuro-Oncology, 2015, 17, 1486-1496.	1.2	39
24	Myxopapillary ependymomas in children: imaging, treatment and outcomes. Journal of Neuro-Oncology, 2016, 126, 165-174.	2.9	39
25	Neuronal differentiation and cell-cycle programs mediate response to BET-bromodomain inhibition in MYC-driven medulloblastoma. Nature Communications, 2019, 10, 2400.	12.8	37
26	Tyrosine receptor kinase B is a drug target in astrocytomas. Neuro-Oncology, 2017, 19, 22-30.	1.2	32
27	Liquid biopsy detection of genomic alterations in pediatric brain tumors from cell-free DNA in peripheral blood, CSF, and urine. Neuro-Oncology, 2022, 24, 1352-1363.	1.2	29
28	Structural variants shape driver combinations and outcomes in pediatric high-grade glioma. Nature Cancer, 2022, 3, 994-1011.	13.2	20
29	MR Imaging Correlates for Molecular and Mutational Analyses in Children with Diffuse Intrinsic Pontine Glioma. American Journal of Neuroradiology, 2020, 41, 874-881.	2.4	15
30	Characteristics of patients ≥10 years of age with diffuse intrinsic pontine glioma: a report from the International DIPG/DMG Registry. Neuro-Oncology, 2022, 24, 141-152.	1.2	9
31	Increasing value of autopsies in patients with brain tumors in the molecular era. Journal of Neuro-Oncology, 2019, 145, 349-355.	2.9	6
32	The "Risk―in Pediatric Low-Grade Glioma. Cancer Cell, 2020, 37, 424-425.	16.8	5
33	LTBK-04. LATE BREAKING ABSTRACT: MEK162 (binimetinib) in children with progressive or recurrent low-grade glioma: a multi-institutional phase II and target validation study. Neuro-Oncology, 2022, 24, i191-i192.	1.2	4
34	DIPG-69. CHARACTERISTICS OF PATIENTS ≥ 10 YEARS OF AGE WITH DIFFUSE INTRINSIC PONTINE GLIOMA: A REPORT FROM THE INTERNATIONAL DIPG REGISTRY. Neuro-Oncology, 2018, 20, i63-i63.	1.2	1
35	LG-66CLINICAL AND TREATMENT FACTORS DETERMINING LONG-TERM OUTCOMES FOR ADULT SURVIVORS OF CHILDHOOD LOW-GRADE GLIOMA: A POPULATION-BASED STUDY. Neuro-Oncology, 2016, 18, iii94.1-iii94.	1.2	O
36	Population Control: Cortical Interneurons Modulate Oligodendrogenesis. Neuron, 2017, 94, 415-417.	8.1	0

3

#	Article	IF	CITATIONS
37	LGG-13. RESOLVING TRANSCRIPTIONAL PROFILES IN BRAF-REARRANGED PILOCYTIC ASTROCYTOMA USING SINGLE CELL RNA SEQUENCING. Neuro-Oncology, 2018, 20, i107-i107.	1.2	0
38	PATH-17. INCREASING VALUE OF AUTOPSIES IN PATIENTS WITH BRAIN TUMORS IN THE MOLECULAR ERA. Neuro-Oncology, 2018, 20, vi161-vi162.	1.2	0
39	TBIO-18. LIQUID BIOPSY DETECTION OF GENOMIC ALTERATIONS IN PEDIATRIC BRAIN TUMORS FROM CELL FREE DNA IN PERIPHERAL BLOOD, CSF, AND URINE. Neuro-Oncology, 2018, 20, i184-i184.	1.2	O
40	MEDU-36. BCL2 FAMILY MEMBERS ATTENUATE RESPONSE OF MYC-DRIVEN MEDULLOBLASTOMAS TO BET-BROMODOMAIN INHIBITION. Neuro-Oncology, 2019, 21, ii110-ii111.	1.2	0
41	DIPG-12. CHARACTERIZING THE ROLE OF PPM1D MUTATIONS IN THE PATHOGENESIS OF DIFFUSE INTRINSIC PONTINE GLIOMAS (DIPGs). Neuro-Oncology, 2019, 21, ii70-ii71.	1.2	O
42	DIPG-02. TRANSLATIONAL MR IMAGING CORRELATES FOR MOLECULAR ANALYSES IN DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG). Neuro-Oncology, 2019, 21, ii68-ii68.	1.2	0
43	Abstract 1816: Phenogenomic characterization of immunomodulatory purinergic signaling in glioblastoma., 2021,,.		O
44	RARE-07. THE LANDSCAPE OF GENOMIC ALTERATIONS IN ADAMANTINOMATOUS CRANIOPHARYNGIOMAS. Neuro-Oncology, 2020, 22, iii443-iii443.	1.2	0
45	LGG-35. FUNCTIONAL GENOMIC APPROACHES TO IDENTIFY THERAPEUTIC TARGETS IN <i>MYB</i> MYBL1EXPRESSING PEDIATRIC LOW-GRADE GLIOMAS. Neuro-Oncology, 2020, 22, iii373-iii373.	1.2	O
46	DIPG-53. CHARACTERIZING THE ROLE OF PPM1D MUTATIONS IN THE PATHOGENESIS OF DIFFUSE INTRINSIC PONTINE GLIOMAS (DIPGS). Neuro-Oncology, 2020, 22, iii297-iii297.	1.2	0
47	DDRE-14. OPTIMIZING MDM2 INHIBITION FOR THE TREATMENT OF HIGH-GRADE GLIOMA. Neuro-Oncology, 2021, 23, vi77-vi77.	1.2	O
48	CSIG-06. ELUCIDATING THE ROLE OF CO-OCCURRING MUTATIONS IN FGFR1-DRIVEN PEDIATRIC LOW-GRADE GLIOMA. Neuro-Oncology, 2021, 23, vi34-vi34.	1.2	0
49	EPCO-21. CORE REGULATORY CIRCUIT TRANSCRIPTION FACTORS DRIVE EXPRESSION FROM HIGH LEVEL AMPLICONS IN PEDIATRIC HIGH-GRADE GLIOMAS. Neuro-Oncology, 2021, 23, vi6-vi6.	1.2	O
50	NIMG-11. VOLUMETRIC ENDPOINTS IN DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG): COMPARISON TO CROSS-SECTIONAL MEASURES AND CORRELATION WITH OUTCOMES. Neuro-Oncology, 2021, 23, vi129-vi130.	1.2	0
51	TAMI-75. LIPID METABOLISM AS A THERAPEUTIC VULNERABILITY IN BET INHIBITOR-RESISTANT MEDULLOBLASTOMA. Neuro-Oncology, 2021, 23, vi214-vi214.	1.2	O
52	EXTH-71. FUNCTIONAL GENOMICS IDENTIFIES EPIGENETIC REGULATORS AS NOVEL THERAPEUTIC TARGETS FOR SONIC HEDGEHOG MEDULLOBLASTOMA. Neuro-Oncology, 2021, 23, vi179-vi179.	1.2	0
53	HGG-36. Elucidating the role of long non-coding RNAs in pediatric high grade gliomas. Neuro-Oncology, 2022, 24, i68-i69.	1.2	O
54	RARE-22 Characterizing the landscape of structural variants in adamantinomatous craniopharyngioma. Neuro-Oncology, 2022, 24, i14-i14.	1.2	0

#	Article	IF	CITATIONS
55	DIPG-19. FOXR2 is an oncogenic driver across pediatric and adult cancers. Neuro-Oncology, 2022, 24, i21-i22.	1.2	O
56	LGG-45. Genetic dependencies in <i>MYB/MYBL1</i> driven pediatric low-grade glioma models. Neuro-Oncology, 2022, 24, i98-i98.	1.2	0
57	Abstract 3890: Sequencing of 888 pediatric solid tumors informs precision oncology trial design and data sharing initiatives in pediatric cancer. Cancer Research, 2022, 82, 3890-3890.	0.9	0