Gaoxi Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4393141/publications.pdf

Version: 2024-02-01

219 papers 3,875 citations

186265
28
h-index

54 g-index

227 all docs

227 docs citations

times ranked

227

3512 citing authors

#	Article	IF	CITATIONS
1	False Data Injection on State Estimation in Power Systemsâ€"Attacks, Impacts, and Defense: A Survey. IEEE Transactions on Industrial Informatics, 2017, 13, 411-423.	11.3	403
2	Defending Against False Data Injection Attacks on Power System State Estimation. IEEE Transactions on Industrial Informatics, 2017, 13, 198-207.	11.3	246
3	On Feasibility and Limitations of Detecting False Data Injection Attacks on Power Grid State Estimation Using D-FACTS Devices. IEEE Transactions on Industrial Informatics, 2020, 16, 854-864.	11.3	123
4	A robust optimization approach for energy generation scheduling in microgrids. Energy Conversion and Management, 2015, 106, 597-607.	9.2	121
5	Clustering algorithms for maximizing the lifetime of wireless sensor networks with energy-harvesting sensors. Computer Networks, 2013, 57, 2689-2704.	5.1	116
6	Motor Imagery EEG Signals Classification Based on Mode Amplitude and Frequency Components Using Empirical Wavelet Transform. IEEE Access, 2019, 7, 127678-127692.	4.2	114
7	Motor Imagery EEG Signals Decoding by Multivariate Empirical Wavelet Transform-Based Framework for Robust Brain–Computer Interfaces. IEEE Access, 2019, 7, 171431-171451.	4.2	110
8	Two-Stage Mechanism for Massive Electric Vehicle Charging Involving Renewable Energy. IEEE Transactions on Vehicular Technology, 2016, 65, 4159-4171.	6.3	99
9	Algorithms for allocating wavelength converters in all-optical networks. IEEE/ACM Transactions on Networking, 1999, 7, 545-557.	3.8	90
10	Virus Propagation and Patch Distribution in Multiplex Networks: Modeling, Analysis, and Optimal Allocation. IEEE Transactions on Information Forensics and Security, 2019, 14, 1755-1767.	6.9	81
11	Power demand and supply management in microgrids with uncertainties of renewable energies. International Journal of Electrical Power and Energy Systems, 2014, 63, 260-269.	5.5	80
12	System crash as dynamics of complex networks. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11726-11731.	7.1	80
13	Analysis of blocking probability for distributed lightpath establishment in WDM optical networks. IEEE/ACM Transactions on Networking, 2005, 13, 187-197.	3.8	76
14	Fast Distributed Demand Response With Spatially and Temporally Coupled Constraints in Smart Grid. IEEE Transactions on Industrial Informatics, 2015, 11, 1597-1606.	11.3	76
15	Adaptive consensus for heterogeneous multi-agent systems under sensor and actuator attacks. Automatica, 2020, 122, 109242.	5.0	74
16	Unscented Kalman Filter With Generalized Correntropy Loss for Robust Power System Forecasting-Aided State Estimation. IEEE Transactions on Industrial Informatics, 2019, 15, 6091-6100.	11.3	57
17	Controllability of Markovian jump Boolean control networks. Automatica, 2019, 106, 70-76.	5.0	55
18	Minimum-cost control of complex networks. New Journal of Physics, 2016, 18, 013012.	2.9	53

#	Article	IF	Citations
19	Hybrid Centralized-Decentralized (HCD) Charging Control of Electric Vehicles. IEEE Transactions on Vehicular Technology, 2017, 66, 6728-6741.	6.3	51
20	An analytical method for PID controller tuning with specified gain and phase margins for integral plus time delay processes. ISA Transactions, 2011, 50, 268-276.	5.7	50
21	Dynamics of competing ideas in complex social systems. New Journal of Physics, 2012, 14, 013015.	2.9	48
22	Epidemic reemergence in adaptive complex networks. Physical Review E, 2012, 85, 036107.	2.1	48
23	An adaptive routing algorithm for wavelength-routed optical networks with a distributed control scheme. , 0, , .		46
24	Tolerance of intentional attacks in complex communication networks. , 2008, 46, 146-152.		41
25	Intermediate-node initiated reservation (iir): a new signaling scheme for wavelength-routed networks. IEEE Journal on Selected Areas in Communications, 2003, 21, 1285-1294.	14.0	37
26	A Simple Discrete-Time Tracking Differentiator and Its Application to Speed and Position Detection System for a Maglev Train. IEEE Transactions on Control Systems Technology, 2019, 27, 1728-1734.	5.2	36
27	A New Framework for Automatic Detection of Motor and Mental Imagery EEG Signals for Robust BCI Systems. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-12.	4.7	36
28	Imperfect targeted immunization in scale-free networks. Physica A: Statistical Mechanics and Its Applications, 2009, 388, 2535-2546.	2.6	34
29	Evolutionary Algorithms Refining a Heuristic: A Hybrid Method for Shared-Path Protections in WDM Networks Under SRLG Constraints. IEEE Transactions on Systems, Man, and Cybernetics, 2007, 37, 51-61.	5.0	30
30	Local self-optimizing control of constrained processes. Journal of Process Control, 2012, 22, 488-493.	3.3	30
31	Epidemics spreading in interconnected complex networks. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 2689-2696.	2.1	28
32	Quasi-Synchronization of Heterogeneous Networks With a Generalized Markovian Topology and Event-Triggered Communication. IEEE Transactions on Cybernetics, 2020, 50, 4200-4213.	9.5	28
33	Minimum Dominating Set of Multiplex Networks: Definition, Application, and Identification. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 7823-7837.	9.3	28
34	Analysis of blocking probability for connection management schemes in optical networks. , 0, , .		27
35	A model predictive approach to protect power systems against cascading blackouts. International Journal of Electrical Power and Energy Systems, 2019, 113, 310-321.	5.5	27
36	Motor Imagery BCI Classification Based on Multivariate Variational Mode Decomposition. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 6, 1177-1189.	4.9	27

#	Article	IF	CITATIONS
37	Robustness of scale-free networks under rewiring operations. Europhysics Letters, 2010, 89, 38002.	2.0	25
38	Algorithms for finding best locations of cluster heads for minimizing energy consumption in wireless sensor networks. Wireless Networks, 2013, 19, 1755-1768.	3.0	23
39	The robustness of interdependent networks under the interplay between cascading failures and virus propagation. Europhysics Letters, 2016, 115, 58004.	2.0	22
40	Event Detection in Wireless Sensor Networks in Random Spatial Sensors Deployments. IEEE Transactions on Signal Processing, 2015, 63, 6122-6135.	5. 3	21
41	Synchronization of networks over finite fields. Automatica, 2020, 115, 108877.	5.0	21
42	On Convergence Performance of Discrete-Time Optimal Control Based Tracking Differentiator. IEEE Transactions on Industrial Electronics, 2021, 68, 3359-3369.	7.9	21
43	Blocking analysis of dynamic lightpath establishment in wavelength-routed networks. , 0, , .		20
44	On the benefits of multifiber optical packet switch. Microwave and Optical Technology Letters, 2004, 43, 376-378.	1.4	20
45	Two-stage cut saturation algorithm for designing all-optical networks. IEEE Transactions on Communications, 2001, 49, 1102-1115.	7.8	19
46	Decentralized Control System Design for MIMO Processes with Integrators/Differentiators. Industrial & December 12521-12528.	3.7	19
47	Enabling Controlling Complex Networks with Local Topological Information. Scientific Reports, 2018, 8, 4593.	3.3	19
48	Calculation of DC Bias Reactive Power Loss of Converter Transformer via Finite Element Analysis. IEEE Transactions on Power Delivery, 2021, 36, 751-759.	4.3	19
49	Sag Source Location and Type Recognition via Attention-based Independently Recurrent Neural Network. Journal of Modern Power Systems and Clean Energy, 2021, 9, 1018-1031.	5.4	18
50	Evaluating Temporal Factors in Combined Interventions of Workforce Shift and School Closure for Mitigating the Spread of Influenza. PLoS ONE, 2012, 7, e32203.	2.5	18
51	Opinion diversity and community formation in adaptive networks. Chaos, 2017, 27, 103115.	2.5	17
52	A robust optimization approach for protecting power systems against cascading blackouts. Electric Power Systems Research, 2020, 189, 106794.	3.6	17
53	Identifying critical risks of cascading failures in power systems. IET Generation, Transmission and Distribution, 2019, 13, 2438-2445.	2.5	16
54	All-optical modulation-transparent wavelength multicasting in a highly nonlinear fiber Sagnac loop mirror. Optics Express, 2010, 18, 10343.	3.4	15

#	Article	IF	CITATIONS
55	PID controller design based on two-degrees-of-freedom direct synthesis. , 2011, , .		15
56	Link-based formalism for time evolution of adaptive networks. Physical Review E, 2013, 88, 032808.	2.1	15
57	Benefits of advertising wavelength availability in distributed lightpath establishment. Computer Networks, 2006, 50, 2364-2379.	5.1	14
58	Effects of Interconnections on Epidemics in Network of Networks. , 2011, , .		14
59	Intelligent Microgrid Management and EV Control Under Uncertainties in Smart Grid. , 2018, , .		14
60	Positioning, Navigation, and Book Accessing/Returning in an Autonomous Library Robot using Integrated Binocular Vision and QR Code Identification Systems. Sensors, 2019, 19, 783.	3.8	14
61	Asymmetric interdependent networks with multiple-dependence relation. Physical Review E, 2020, 101, 022314.	2.1	14
62	Detection of False Data Injection Attacks on Smart Grids: A Resilience-Enhanced Scheme. IEEE Transactions on Power Systems, 2022, 37, 2679-2692.	6.5	14
63	Performance Comparison of Using SOA and HNLF as FWM Medium in a Wavelength Multicasting Scheme With Reduced Polarization Sensitivity. Journal of Lightwave Technology, 2010, , .	4.6	13
64	Distributed consensus of heterogeneous multi-agent systems subject to switching topologies and delays. Journal of the Franklin Institute, 2020, 357, 6899-6917.	3.4	13
65	Design of node configuration for all-optical multi-fiber networks. IEEE Transactions on Communications, 2002, 50, 135-145.	7.8	12
66	Temporal factors in school closure policy for mitigating the spread of influenza. Journal of Public Health Policy, 2011, 32, 180-197.	2.0	12
67	Dynamic Multicast Traffic Grooming in Optical WDM Mesh Networks: Lightpath Versus Light-Tree. Journal of Optical Communications and Networking, 2013, 5, 870.	4.8	12
68	Closedâ€form solution of discreteâ€time optimal control and its convergence. IET Control Theory and Applications, 2018, 12, 413-418.	2.1	12
69	High-precision tracking differentiator via generalized discrete-time optimal control. ISA Transactions, 2019, 95, 144-151.	5.7	12
70	On the throughput optimization for message dissemination in opportunistic underwater sensor networks. Computer Networks, 2020, 169, 107097.	5.1	12
71	Distributed Estimation Under Sensor Attacks: Linear and Nonlinear Measurement Models. IEEE Transactions on Signal and Information Processing Over Networks, 2021, 7, 156-165.	2.8	12
72	Stochastic quasi-synchronization of heterogeneous delayed impulsive dynamical networks via single impulsive control. Neural Networks, 2021, 139, 223-236.	5.9	12

#	Article	IF	CITATIONS
73	An Evaluation of Distributed Wavelength Provisioning in WDM Optical Networks With Sparse Wavelength Conversion. Journal of Lightwave Technology, 2004, 22, 1668-1678.	4.6	11
74	Robustness of Complex Communication Networks under Rewiring Operations. , 2006, , .		11
75	An Evaluation of Distributed Parallel Reservations in Wavelength-Routed Networks. IEEE Journal on Selected Areas in Communications, 2007, 25, 27-39.	14.0	11
76	Generation of arbitrary two-point correlated directed networks with given modularity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 3129-3135.	2.1	11
77	An efficient mechanism for dynamic multicast traffic grooming in overlay IP/MPLS over WDM networks. Optical Fiber Technology, 2014, 20, 341-352.	2.7	11
78	Bias in social interactions and emergence of extremism in complex social networks. Chaos, 2020, 30, 103110.	2.5	11
79	Evaluating link-state update triggers in wavelength-routed networks. , 2005, , .		10
80	A novel method of link-state update in wavelength-routed networks. Journal of Lightwave Technology, 2006, 24, 1112-1120.	4.6	10
81	On Traffic Allocations in Optical Packet Switches. IEEE Journal on Selected Areas in Communications, 2007, 25, 108-117.	14.0	10
82	Key node selection for containing infectious disease spread using particle swarm optimization. , 2009, , .		10
83	Relative gain array for MIMO processes containing integrators and/or differentiators. , 2010, , .		10
84	HMM-Based Fast Detection of False Data Injections in Advanced Metering Infrastructure. , 2017, , .		10
85	Opinion formation on multiplex scale-free networks. Europhysics Letters, 2018, 121, 26002.	2.0	10
86	A colored mean-field model for analyzing the effects of awareness on epidemic spreading in multiplex networks. Chaos, 2018, 28, 103116.	2.5	10
87	Towards insider threats detection in smart grid communication systems. IET Communications, 2019, 13, 1728-1736.	2.2	10
88	Design and Implementation of an Efficient Tracking Differentiator. IEEE Access, 2019, 7, 101941-101949.	4.2	10
89	Target Controllability of Two-Layer Multiplex Networks Based on Network Flow Theory. IEEE Transactions on Cybernetics, 2021, 51, 2699-2711.	9.5	10
90	Heuristic for the maximum disjoint paths problem in wavelength-routed networks with shared-risk link groups [Invited]. Journal of Optical Networking, 2003, 3, 38.	2.5	9

#	ARTICLE	IF	Citations
91	Stimulate Brillouin Scattering Based Broadband Tunable Slow-Light Conversion in a Highly Nonlinear Photonic Crystal Fiber. Journal of Lightwave Technology, 2009, 27, 1279-1285.	4.6	9
92	PAMA: A Proactive Approach to Mitigate False Data Injection Attacks in Smart Grids. , 2018, , .		9
93	Distributed sweep coverage algorithm of multi-agent systems using workload memory. Systems and Control Letters, 2019, 124, 75-82.	2.3	9
94	An Optimal Control Approach to Identify the Worst-Case Cascading Failures in Power Systems. IEEE Transactions on Control of Network Systems, 2020, 7, 956-966.	3.7	9
95	Optimal Evolutionary Dispatch for Integrated Community Energy Systems Considering Uncertainties of Renewable Energy Sources and Internal Loads. Energies, 2021, 14, 3644.	3.1	9
96	Robustness of complex communication networks under link attacks. , 2008, , .		9
97	Set controllability of Markov jump switching Boolean control networks and its applications. Nonlinear Analysis: Hybrid Systems, 2022, 45, 101179.	3.5	9
98	Simple analytic formulas for PID tuning. , 2010, , .		8
99	Analytical Proportionalâ^Integral (PI) Controller Tuning Using Closed-Loop Setpoint Response. Industrial & Description of the Proposition of the Industrial & Description of the Industrial &	3.7	8
100	Dynamics of opinion formation under majority rules on complex social networks. Scientific Reports, 2020, 10, 456.	3.3	8
101	Target Control of Directed Networks based on Network Flow Problems. IEEE Transactions on Control of Network Systems, 2020, 7, 673-685.	3.7	8
102	Heuristics for Diverse Routing in Wavelength-Routed Networks with Shared Risk Link Groups. Photonic Network Communications, 2006, 11, 29-38.	2.7	7
103	HPCgen A Fast Generator of Contact Networks of Large Urban Cities for Epidemiological Studies. , 2009, , .		7
104	A preliminary study on lifetime maximization in clustered wireless sensor networks with energy harvesting nodes., 2011,,.		7
105	Effects of fear factors in disease propagation. Journal of Physics A: Mathematical and Theoretical, 2011, 44, 355101.	2.1	7
106	Connection adaption for control of networked mobile chaotic agents. Scientific Reports, 2017, 7, 16069.	3.3	7
107	Universal behavior of the linear threshold model on weighted networks. Journal of Parallel and Distributed Computing, 2019, 123, 223-229.	4.1	7
108	Identification of Catastrophic Cascading Failures in Protected Power Grids Using Optimal Control. Journal of Energy Engineering - ASCE, 2021, 147, .	1.9	7

#	Article	IF	CITATIONS
109	Hybrid protection in WDM networks with shared risk link groups. Photonic Network Communications, 2006, 12, 295-307.	2.7	6
110	Performance evaluation of multi-fiber optical packet switches. Computer Networks, 2007, 51, 995-1012.	5.1	6
111	Historical data learning based dynamic LSP routing for overlay IP/MPLS over WDM networks. Optical Fiber Technology, 2013, 19, 309-318.	2.7	6
112	Network infection source identification under the SIRI model. , 2015, , .		6
113	Multimodal fusion for sensor data using stacked autoencoders. , 2015, , .		6
114	Iterative expectation maximization for reliable social sensing with information flows. Information Sciences, 2019, 501, 621-634.	6.9	6
115	Early dengue outbreak detection modeling based on dengue incidences in Singapore during 2012 to 2017. Statistics in Medicine, 2020, 39, 2101-2114.	1.6	6
116	Behavior of distributed wavelength provisioning in wavelength-routed networks with partial wavelength conversion. , 0, , .		5
117	A network flow approach for static and dynamic traffic grooming in WDM networks. Computer Networks, 2006, 50, 3400-3415.	5.1	5
118	On the performance of different node configurations in multi-fiber optical packet-switched networks. Photonic Network Communications, 2007, 14, 11-22.	2.7	5
119	Pump-Suppressed Nondegenerate Four-Wave Mixing in a Highly Nonlinear Photonic Crystal Fiber Sagnac Loop. IEEE Photonics Technology Letters, 2008, 20, 2129-2131.	2.5	5
120	On the performance of distributed lightpath provisioning with dynamic routing and wavelength assignment. Photonic Network Communications, 2009, 17, 191-201.	2.7	5
121	Tolerance of local information-based intentional attacks in complex networks. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 335101.	2.1	5
122	Selection of Self-Optimizing Controlled Variables for Dynamic Processes. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 774-779.	0.4	5
123	Distributed Event Detection in Sensor Networks under Random Spatial Deployment., 2014,,.		5
124	Maximizing lifetime in clustered WSNs with energy harvesting relay: Profiling and modeling., 2015,,.		5
125	Tracking Differentiator via Time Criterion. , 2018, , .		5
126	Crash dynamics of interdependent networks. Scientific Reports, 2019, 9, 14574.	3.3	5

#	Article	IF	CITATIONS
127	Output Feedback Control of Markovian Switching Boolean Control Networks. , 2019, , .		5
128	Target control and expandable target control of complex networks. Journal of the Franklin Institute, 2020, 357, 3541-3564.	3.4	5
129	Self-Triggered Scheduling for Boolean Control Networks. IEEE Transactions on Cybernetics, 2022, 52, 8911-8921.	9.5	5
130	Info2vec: An aggregative representation method in multi-layer and heterogeneous networks. Information Sciences, 2021, 574, 444-460.	6.9	5
131	Design and Assessment of Sweep Coverage Algorithms for Multiagent Systems With Online Learning Strategies. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 5494-5505.	9.3	5
132	Design of Congestion Control Based on Instantaneous Queue Sizes in the Routers. , 2009, , .		4
133	On early detection of strong infections in complex networks. Journal of Physics A: Mathematical and Theoretical, 2014, 47, 065101.	2.1	4
134	Comparing different models for investigating cascading failures in power systems. , 2017, , .		4
135	Mean First Passage Time of Preferential Random Walks on Complex Networks with Applications. Mathematical Problems in Engineering, 2017, 2017, 1-14.	1.1	4
136	A Network-Based Impact Measure for Propagated Losses in a Supply Chain Network Consisting of Resilient Components. Complexity, 2018, 2018, 1-13.	1.6	4
137	Risk Identification of Power Transmission System with Renewable Energy. , 2019, , .		4
138	Information Cascades and the Collapse of Cooperation. Scientific Reports, 2020, 10, 8004.	3.3	4
139	Day-Ahead Economic Dispatch of Renewable Energy System considering Wind and Photovoltaic Predicted Output. International Transactions on Electrical Energy Systems, 2022, 2022, 1-14.	1.9	4
140	Algorithms for Energy-Efficient Clustering in Wireless Sensor Networks., 2006,,.		3
141	The Performance of Periodic Link-State Update in Wavelength-Routed Networks. , 2006, , .		3
142	On local link repairing in complex communication networks under intentional attack. , 2007, , .		3
143	Multiuser Detection for Decode-and-Forward Cooperative Relaying in DS-CDMA Systems. , 2009, , .		3
144	Historical data learning based dynamic LSP routing for overlay IP over WDM networks. , 2009, , .		3

#	Article	IF	CITATIONS
145	Distributed relay scheduling for maximizing lifetime in clustered wireless sensor networks. , 2012, , .		3
146	Self-clocking principle for congestion control in the Internet. Automatica, 2012, 48, 425-429.	5.0	3
147	Two-stage mechanism design for electric vehicle charging involving renewable energy. , 2014, , .		3
148	Infection spreading, detection and control in community networks. Journal of Complex Networks, 2017, 5, 625-640.	1.8	3
149	Enhanced Connection Adaption Strategy With Partition Approach. IEEE Access, 2019, 7, 34162-34169.	4.2	3
150	Identifying disruptive contingencies for catastrophic cascading failures in power systems. International Journal of Electrical Power and Energy Systems, 2020, 123, 106214.	5 . 5	3
151	A distributed signaling scheme for provisioning dynamic traffic in wavelength-routed networks. , 2003, , .		3
152	Control of mobile chaotic agents with jump-based connection adaption strategy. New Journal of Physics, 2020, 22, 073032.	2.9	3
153	Decentralized Secondary Frequency Restoration and Power Sharing Control for MTDC Transmission Systems. , 2020, , .		3
154	Algorithms for the diverse routing problem in WDM networks with shared risk link groups. , 0, , .		2
155	Blocking analysis of multifiber wavelength-routed networks. , 0, , .		2
156	Design Principles and Formulation for Optical SMART Networks. , 2007, , .		2
157	On imperfect node protection in complex communication networks. Journal of Physics A: Mathematical and Theoretical, 2011, 44, 055101.	2.1	2
158	Effects of node protections against intentional attack in complex communication networks. , 2011, , .		2
159	Local Self-optimizing Control with Input and Output Constraints. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 9850-9855.	0.4	2
160	Upgrading unicast nodes to multicast-capable nodes in all-optical networks. Computer Networks, 2011, 55, 2005-2021.	5.1	2
161	Design and implementation of a real time locating system utilizing Wi-Fi signals from iPhones. , 2012, , .		2
162	Connection level segment shared protection for dynamic multicast traffic grooming. , 2013, , .		2

#	Article	IF	CITATIONS
163	An efficient mechanism for dynamic survivable multicast traffic grooming. Optical Fiber Technology, 2015, 23, 1-12.	2.7	2
164	Energy Generation Scheduling in Microgrids Involving Temporal-Correlated Renewable Energy. , 2017, , .		2
165	Match making in complex social networks. Applied Mathematics and Computation, 2020, 371, 124928.	2.2	2
166	A Time-Delay-Bounded Data Scheduling Algorithm for Delay Reduction in Distributed Networked Control Systems. Mathematical Problems in Engineering, 2020, 2020, 1-12.	1.1	2
167	Simultaneous stable control of temperature field distribution uniformity and consistency for multi-temperature zone systems. Transactions of the Institute of Measurement and Control, 2021, 43, 2069-2080.	1.7	2
168	Modeling and Analysis of Temperature Compensation for Multi-temperature Zone Sintering Furnace Temperature Sensing. International Journal of Control, Automation and Systems, 2021, 19, 2431-2443.	2.7	2
169	Speed-accelerating method for the control of mobile chaotic agents. European Physical Journal: Special Topics, 2021, 230, 2043-2049.	2.6	2
170	Heuristic Strategies for Persuader Selection in Contagions on Complex Networks. PLoS ONE, 2017, 12, e0169771.	2.5	2
171	Observer-Based Sliding Mode Load Frequency Control of Power Systems under Deception Attack. Complexity, 2021, 2021, 1-11.	1.6	2
172	ActionÂRecognitionÂUsing HierarchicalÂIndependentÂSubspaceÂAnalysis withÂTrajectory. Proceedings in Adaptation, Learning and Optimization, 2015, , 549-559.	1.6	2
173	State Distribution of Markovian Jump Boolean Networks and Its Applications. IEEE Transactions on Automatic Control, 2023, 68, 1815-1822.	5.7	2
174	Spatiotemporal Input Control: Leveraging Temporal Variation in Network Dynamics. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 635-651.	13.1	2
175	Cost-effective WDM broadcast-and-select networks for all-to-all transmission schedules. Journal of Systems Architecture, 1998, 45, 115-129.	4.3	1
176	Corrections to "design of node configuration for all-optical multi-fiber networks". IEEE Transactions on Communications, 2002, 50, 686-686.	7.8	1
177	NISp1-06: On Intentional Attacks and Protections in Complex Communication Networks. IEEE Global Telecommunications Conference (GLOBECOM), 2006, , .	0.0	1
178	A new contention-resolution scheme for time-critical applications in multifiber optical packet-switched networks. Microwave and Optical Technology Letters, 2006, 48, 717-719.	1.4	1
179	An efficient wavelength assignment method for distributed lightpath restoration in wavelength-routed networks. , 2007, , .		1
180	Influence of random opinion change in complex networks. , 2015, , .		1

#	Article	IF	Citations
181	Influences of link cost and routing methods on dynamic multicasting in overlay IP/MPLS over WDM networks. , 2015, , .		1
182	Cooperative Control of TCSC to Relieve the Stress of Cyber-physical Power System. , 2018, , .		1
183	Identification and Analysis of Cascading Failures in Power Grids with Protective Actions. , 2019, , .		1
184	Optical Wavelength Multicasting Based on Four Wave Mixing in Highly Nonlinear Fiber with Reduced Polarization Sensitivity. , $2010, , .$		1
185	Allocation of Wavelength Converters in All-Optical Networks. Network Theory and Applications, 2001, , 299-345.	0.6	1
186	Simple and Efficient Tracking Differentiator. Lecture Notes in Electrical Engineering, 2021, , 35-46.	0.4	1
187	A Comparison Study of Tracking Differentiator and Robust Exact Differentiator. , 2020, , .		1
188	Intermediate-node initiated reservation (IIR): a new signaling scheme for wavelength-routed networks with sparse conversion. , 0 , , .		0
189	Fixed-wavelength conversion for contention resolution in optical packet switches. Microwave and Optical Technology Letters, 2004, 41, 185-187.	1.4	0
190	Broad-band tunable four wave mixing based wavelength converter with filterless pump suppression. , 2008, , .		0
191	Modeling of distortion for arbitrary packet loss patterns in video transmission. , 2008, , .		0
192	The spread of interacting agents in scale-free networks. , 2009, , .		0
193	Efficient Wavelength Assignment Methods for Distributed Lightpath Restorations in Wavelength-Routed Networks. Journal of Lightwave Technology, 2009, 27, 833-840.	4.6	0
194	Design of a 100Tb/s Multicast-capable Optical Packet Router (Invited). , 2010, , .		0
195	EDITORIAL: BEYOND SMALL-WORLD AND SCALE-FREE NETWORKS. International Journal of Modeling, Simulation, and Scientific Computing, 2010, 13, 1-2.	1.4	0
196	Placement of Multicast Capable Nodes in Power Constrained All-Optical WDM Networks. , 2010, , .		0
197	All-optical wavelength muticasting. , 2011, , .		0
198	Performance comparisons between lightpath and light-tree schemes in dynamic multicast traffic grooming process. , 2012, , .		0

#	Article	IF	CITATIONS
199	Impacts of link-cost and routing methods on overlay network performances for dynamic traffic grooming. , $2014, , .$		O
200	Synchronization of pinning networks with Markovian switching topologies and event-triggered communication. , 2016, , .		0
201	Global consensus making on multiplex scale-free networks. , 2017, , .		0
202	A High-Precision Discrete Tracking Differentiator and its Application in Processing PMU Data., 2018,,.		0
203	Matrix function optimization under weighted boundary constraints and its applications in network control. ISA Transactions, 2018, 80, 232-243.	5.7	0
204	Multiobjective Lightning Flash Algorithm Design and Its Convergence Analysis via Martingale Theory. Complexity, 2020, 2020, 1-10.	1.6	0
205	Discrete-Time Optimal Control of Double Integrators and its Application in Maglev Train. IEEJ Journal of Industry Applications, 2021, , .	1.1	0
206	Distributed Fixed-Time Secondary Frequency Control of MTDC systems. , 2021, , .		0
207	Hybrid protection in WDM networks with shared risk link groups. , 2005, , .		0
208	Energy-efficient clustering for ad-hoc transmission in wireless sensor networks. , 2008, , .		0
209	A Preliminary Study on the Effects of Fear Factors in Disease Propagation. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2009, , 1387-1397.	0.3	0
210	$7\tilde{A}-10$ -Gbit/s All-optical Wavelength Multicast based on Cross-gain Modulation and Cascaded Four-wave Mixing Effects in an SOA Using Single Pump Laser Source., $2011, \dots$		0
211	Band Coverage in Wireless Sensor Networks: A Preliminary Study. , 2017, , .		0
212	Energy Generation Scheduling in Microgrids Involving Temporal-Correlated Renewable Energy. , 2018, , 69-81.		0
213	SPNTA: Reliability Analysis Under Topology Attacks—A Stochastic Petri Net Approach. Wireless Networks, 2020, , 41-74.	0.5	0
214	Fundamentals and Related Literature. Wireless Networks, 2020, , 23-40.	0.5	0
215	DHCD: Distributed Host-Based Collaborative Detection for FmDI Attacks. Wireless Networks, 2020, , 75-97.	0.5	0
216	DDOA: A Dirichlet-Based Detection Scheme for Opportunistic Attacks. Wireless Networks, 2020, , 99-121.	0.5	0

#	Article	IF	CITATIONS
217	PFDD: On Feasibility and Limitations of Detecting FmDI Attacks Using D-FACTS. Wireless Networks, 2020, , 123-148.	0.5	O
218	Discrete Time Optimal Control Algorithm. Lecture Notes in Electrical Engineering, 2021, , 17-33.	0.4	0
219	On Convergence Performance of DTOC Based Tracking Differentiator. Lecture Notes in Electrical Engineering, 2021, , 47-59.	0.4	O