Joerg Enderlein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/43923/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluorescence lifetime DNA-PAINT for multiplexed super-resolution imaging of cells. Communications Biology, 2022, 5, 38.	4.4	25
2	Modeling charge separation in charged nanochannels for single-molecule electrometry. Journal of Chemical Physics, 2022, 156, 105104.	3.0	0
3	Optimal transfer functions for bandwidth-limited imaging. Physical Review Research, 2022, 4, .	3.6	3
4	Super-resolution imaging: when biophysics meets nanophotonics. Nanophotonics, 2022, 11, 169-202.	6.0	6
5	Measuring Photophysical Transition Rates with Fluorescence Correlation Spectroscopy and Antibunching. Journal of Physical Chemistry Letters, 2022, 13, 4823-4830.	4.6	1
6	Electrically controlling and optically observing the membrane potential of supported lipid bilayers. Biophysical Journal, 2022, 121, 2624-2637.	0.5	3
7	Isotropic three-dimensional dual-color super-resolution microscopy with metal-induced energy transfer. Science Advances, 2022, 8, .	10.3	16
8	Single-Molecule Fluorescence Lifetime Imaging Using Wide-Field and Confocal-Laser Scanning Microscopy: A Comparative Analysis. Nano Letters, 2022, 22, 6454-6461.	9.1	20
9	Atg21 organizes Atg8 lipidation at the contact of the vacuole with the phagophore. Autophagy, 2021, 17, 1458-1478.	9.1	23
10	Doubling the resolution of a confocal spinning-disk microscope using image scanning microscopy. Nature Protocols, 2021, 16, 164-181.	12.0	13
11	Multi olor, Bleachingâ€Resistant Superâ€Resolution Optical Fluctuation Imaging with Oligonucleotideâ€Based Exchangeable Fluorophores. Angewandte Chemie - International Edition, 2021, 60, 6310-6313.	13.8	19
12	Multiâ€Color, Bleachingâ€Resistant Superâ€Resolution Optical Fluctuation Imaging with Oligonucleotideâ€Based Exchangeable Fluorophores. Angewandte Chemie, 2021, 133, 6380-6383.	2.0	5
13	Global and local tension measurements in biomimetic skeletal muscle tissues reveals early mechanical homeostasis. ELife, 2021, 10, .	6.0	24
14	Rapid multi-plane phase-contrast microscopy reveals torsional dynamics in flagellar motion. Biomedical Optics Express, 2021, 12, 3169.	2.9	10
15	Transmembrane βâ€peptide helices as molecular rulers at the membrane surface. Journal of Peptide Science, 2021, 27, e3355.	1.4	1
16	Graphene- and metal-induced energy transfer for single-molecule imaging and live-cell nanoscopy with (sub)-nanometer axial resolution. Nature Protocols, 2021, 16, 3695-3715.	12.0	30
17	Radiative Rate Modulation Reveals Nearâ€Unity Quantum Yield of Graphene Quantum Dots. Advanced Optical Materials, 2021, 9, 2100314.	7.3	2
18	Picosecond to Second Fluorescence Correlation Spectroscopy for Studying Solute Exchange and Quenching Dynamics in Micellar Media. Journal of Physical Chemistry Letters, 2021, 12, 7641-7649.	4.6	6

#	Article	IF	CITATIONS
19	Mapping Activity-Dependent Quasi-stationary States of Mitochondrial Membranes with Graphene-Induced Energy Transfer Imaging. Nano Letters, 2021, 21, 8244-8249.	9.1	9
20	Instant three-color multiplane fluorescence microscopy. Biophysical Reports, 2021, 1, 100001.	1.2	3
21	Advanced fluorescence correlation spectroscopy for studying biomolecular conformation. Current Opinion in Structural Biology, 2021, 70, 123-131.	5.7	7
22	CONVERTING TEMPORAL INTO SPATIAL INFORMATION., 2021,,.		0
23	Nanoscopic anatomy of dynamic multi-protein complexes at membranes resolved by graphene-induced energy transfer. ELife, 2021, 10, .	6.0	19
24	Photophysical properties and fluorescence lifetime imaging of exfoliated near-infrared fluorescent silicate nanosheets. Nanoscale Advances, 2021, 3, 4541-4553.	4.6	12
25	Advanced Data Analysis for Fluorescence-Lifetime Single-Molecule Localization Microscopy. Frontiers in Bioinformatics, 2021, 1, .	2.1	5
26	Electric field lines of relativistically moving point charges. American Journal of Physics, 2020, 88, 5-10.	0.7	5
27	Confocal Fluorescence-Lifetime Single-Molecule Localization Microscopy. ACS Nano, 2020, 14, 14190-14200.	14.6	65
28	Absolute quantum yield measurements of fluorescent proteins using a plasmonic nanocavity. Communications Biology, 2020, 3, 627.	4.4	15
29	Single-molecule confinement with uniform electrodynamic nanofluidics. Lab on A Chip, 2020, 20, 3249-3257.	6.0	6
30	Emission States Variation of Single Graphene Quantum Dots. Journal of Physical Chemistry Letters, 2020, 11, 7356-7362.	4.6	10
31	Time-resolved MIET measurements of blood platelet spreading and adhesion. Nanoscale, 2020, 12, 21306-21315.	5.6	13
32	Metal-Induced Energy Transfer Imaging. Topics in Applied Physics, 2020, , 227-239.	0.8	3
33	Multi-target immunofluorescence by separation of antibody cross-labelling via spectral-FLIM-FRET. Scientific Reports, 2020, 10, 3820.	3.3	8
34	Fluorescence polarization filtering for accurate single molecule localization. APL Photonics, 2020, 5, .	5.7	14
35	Binding Constant Determined from the Angstrom-Scale Change in Hydrodynamic Radius of Transferrin upon Binding with Europium Using Dual-Focus Fluorescence Correlation Spectroscopy. Journal of Physical Chemistry Letters, 2020, 11, 1148-1153.	4.6	1
36	Wide-Field Fluorescence Lifetime Imaging of Single Molecules. Journal of Physical Chemistry A, 2020, 124, 3494-3500.	2.5	39

#	Article	IF	CITATIONS
37	Kinetics of Loop Closure in Disordered Proteins: Theory vs Simulations vs Experiments. Journal of Physical Chemistry B, 2020, 124, 3482-3493.	2.6	10
38	Plasmon-Driven Modulation of Reaction Pathways of Individual Pt-Modified Au Nanorods. Nano Letters, 2020, 20, 3326-3330.	9.1	31
39	Single-molecule imaging goes high throughput. Nature Nanotechnology, 2020, 15, 419-420.	31.5	4
40	Dimerization of Human Drebrin-like Protein Governs Its Biological Activity. Biochemistry, 2020, 59, 1553-1558.	2.5	0
41	Efficient modeling of three-dimensional convection–diffusion problems in stationary flows. Physics of Fluids, 2020, 32, .	4.0	5
42	Metasurface-based total internal reflection microscopy. Biomedical Optics Express, 2020, 11, 1967.	2.9	7
43	Structural myelin defects are associated with low axonal ATP levels but rapid recovery from energy deprivation in a mouse model of spastic paraplegia. PLoS Biology, 2020, 18, e3000943.	5.6	26
44	Gradual compaction of the nascent peptide during cotranslational folding on the ribosome. ELife, 2020, 9, .	6.0	36
45	Dual-Color Metal-Induced Energy Transfer (MIET) Imaging for Three-Dimensional Reconstruction of Nuclear Envelope Architecture. Methods in Molecular Biology, 2020, 2175, 33-45.	0.9	1
46	Quantitative analysis of hidden particles diffusing behind a scattering layer using speckle correlation. Optics Express, 2020, 28, 32936.	3.4	1
47	Graphene-based metal-induced energy transfer for sub-nanometre optical localization. Nature Photonics, 2019, 13, 860-865.	31.4	66
48	Metal-induced energy transfer. Nanophotonics, 2019, 8, 1689-1699.	6.0	20
49	Nanobody Detection of Standard Fluorescent Proteins Enables Multi-Target DNA-PAINT with High Resolution and Minimal Displacement Errors. Cells, 2019, 8, 48.	4.1	56
50	Determining Metal Ion Complexation Kinetics with Fluorescent Ligands by Using Fluorescence Correlation Spectroscopy. ChemPhysChem, 2019, 20, 2093-2102.	2.1	4
51	Image scanning microscopy. Current Opinion in Chemical Biology, 2019, 51, 74-83.	6.1	51
52	Efficient solver for a special class of convection-diffusion problems. Physics of Fluids, 2019, 31, 023606.	4.0	5
53	Spatio-temporal correlation super-resolution optical fluctuation imaging. Europhysics Letters, 2019, 125, 20005.	2.0	7
54	Monitoring Dynamics of Protein Nascent Chain on the Ribosome using PET-FCS. Biophysical Journal, 2019, 116, 189a-190a.	0.5	1

#	Article	IF	CITATIONS
55	Excitation and Emission Transition Dipoles of Type-II Semiconductor Nanorods. Nano Letters, 2019, 19, 1695-1700.	9.1	10
56	Carbon Dots for Studying Muscle Architecture. ACS Applied Nano Materials, 2019, 2, 7466-7472.	5.0	4
57	Loop formation and translational diffusion of intrinsically disordered proteins. Physical Review E, 2019, 100, 052405.	2.1	4
58	Confocal fluorescence correlation spectroscopy through a sparse layer of scattering objects. Optics Express, 2019, 27, 19382.	3.4	3
59	Multi-target immunofluorescence using spectral FLIM-FRET for separation of undesirable antibody cross-labeling. , 2019, , .		0
60	Fluorescence lifetime correlation spectroscopy: Basics and applications. Methods, 2018, 140-141, 32-39.	3.8	38
61	Dual-color metal-induced and Förster resonance energy transfer for cell nanoscopy. Molecular Biology of the Cell, 2018, 29, 846-851.	2.1	26
62	Fluorescent Diarylethene Photoswitches—A Universal Tool for Superâ€Resolution Microscopy in Nanostructured Materials. Small, 2018, 14, 1703333.	10.0	64
63	Photon Yield Enhancement of Red Fluorophores at Cryogenic Temperatures. ChemPhysChem, 2018, 19, 1774-1780.	2.1	27
64	Axial Colocalization of Single Molecules with Nanometer Accuracy Using Metal-Induced Energy Transfer. Nano Letters, 2018, 18, 2616-2622.	9.1	43
65	Monomerization of the photoconvertible fluorescent protein SAASoti by rational mutagenesis of single amino acids. Scientific Reports, 2018, 8, 15542.	3.3	8
66	An axon initial segment is required for temporal precision in action potential encoding by neuronal populations. Science Advances, 2018, 4, eaau8621.	10.3	38
67	Characterizing the Quantum-Confined Stark Effect in Semiconductor Quantum Dots and Nanorods for Single-Molecule Electrophysiology. ACS Photonics, 2018, 5, 4788-4800.	6.6	30
68	Three-dimensional single-molecule localization with nanometer accuracy using Metal-Induced Energy Transfer (MIET) imaging. Journal of Chemical Physics, 2018, 148, 204201.	3.0	26
69	Nanoparticles for super-resolution microscopy and single-molecule tracking. Nature Methods, 2018, 15, 415-423.	19.0	208
70	Progress in Developing (Single) Inorganic Voltage Nanosensors. Biophysical Journal, 2018, 114, 5a.	0.5	0
71	Cell–Substrate Dynamics of the Epithelial-to-Mesenchymal Transition. Nano Letters, 2017, 17, 3320-3326.	9.1	48
72	Quantum Yield Measurements of Fluorophores in Lipid Bilayers Using a Plasmonic Nanocavity. Journal of Physical Chemistry Letters, 2017, 8, 1472-1475.	4.6	11

#	Article	IF	CITATIONS
73	Rapid nonlinear image scanning microscopy. Nature Methods, 2017, 14, 1087-1089.	19.0	62
74	Envelope glycoprotein mobility on HIV-1 particles depends on the virus maturation state. Nature Communications, 2017, 8, 545.	12.8	81
75	Three-Dimensional Reconstruction of Nuclear Envelope Architecture Using Dual-Color Metal-Induced Energy Transfer Imaging. ACS Nano, 2017, 11, 11839-11846.	14.6	42
76	Quantifying Microsecond Transition Times Using Fluorescence Lifetime Correlation Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 6022-6028.	4.6	22
77	Charge-Driven Fluorescence Blinking in Carbon Nanodots. Journal of Physical Chemistry Letters, 2017, 8, 5751-5757.	4.6	43
78	Photon Antibunching Reveals Static and Dynamic Quenching Interaction of Tryptophan with Atto-655. Journal of Physical Chemistry Letters, 2017, 8, 5821-5826.	4.6	29
79	Size and mobility of lipid domains tuned by geometrical constraints. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6064-E6071.	7.1	32
80	From Single-Molecule Spectroscopy to Super-Resolution Microscopy: Super-Resolution Optical Fluctuation Imaging and Metal-Induced Energy Transfer. Biophysical Journal, 2016, 110, 6a.	0.5	0
81	Dead-time correction of fluorescence lifetime measurements and fluorescence lifetime imaging. Optics Express, 2016, 24, 9429.	3.4	49
82	Probing of protein localization and shuttling in mitochondrial microcompartments by FLIM with sub-diffraction resolution. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1290-1299.	1.0	18
83	Seeing the smaller picture. Nature Nanotechnology, 2016, 11, 737-738.	31.5	2
84	Photon Antibunching in Complex Intermolecular Fluorescence Quenching Kinetics. Journal of Physical Chemistry Letters, 2016, 7, 3137-3141.	4.6	13
85	Photoactivation of Luminescent Centers in Single SiO2 Nanoparticles. Nano Letters, 2016, 16, 4312-4316.	9.1	29
86	Structural Ensembles of Intrinsically Disordered Proteins Depend Strongly on Force Field: A Comparison to Experiment. Biophysical Journal, 2016, 110, 358a.	0.5	1
87	Multi-target spectrally resolved fluorescence lifetime imaging microscopy. Nature Methods, 2016, 13, 257-262.	19.0	190
88	Protein cofactor competition regulates the action of a multifunctional RNA helicase in different pathways. RNA Biology, 2016, 13, 320-330.	3.1	39
89	Super-Resolution Optical Fluctuation Bio-Imaging with Dual-Color Carbon Nanodots. Nano Letters, 2016, 16, 237-242.	9.1	122
90	Simultaneous Measurement of the Three-Dimensional Orientation of Excitation and Emission Dipoles. Physical Review Letters, 2015, 115, 173002.	7.8	38

#	Article	IF	CITATIONS
91	Accurate Diffusion Coefficients of Organosoluble Reference Dyes in Organic Media Measured by Dual-Focus Fluorescence Correlation Spectroscopy. ACS Nano, 2015, 9, 7360-7373.	14.6	7
92	MD Simulations and FRET Reveal an Environment-Sensitive Conformational Plasticity of Importin-β. Biophysical Journal, 2015, 109, 277-286.	0.5	23
93	Photoluminescence of a single quantum emitter in a strongly inhomogeneous chemical environment. Physical Chemistry Chemical Physics, 2015, 17, 14994-15000.	2.8	11
94	Photon Antibunching in a Cyclic Chemical Reaction Scheme. Journal of Physical Chemistry Letters, 2015, 6, 1149-1154.	4.6	17
95	Ultra-stable and versatile widefield cryo-fluorescence microscope for single-molecule localization with sub-nanometer accuracy. Optics Express, 2015, 23, 3770.	3.4	45
96	Fourier interpolation stochastic optical fluctuation imaging. Optics Express, 2015, 23, 16154.	3.4	40
97	Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging. Nature Communications, 2014, 5, 5830.	12.8	133
98	Observation of Unusual Molecular Diffusion Behaviour below the Lower Critical Solution Temperature of Water/2â€Butoxyethanol Mixtures by using Fluorescence Correlation Spectroscopy. ChemPhysChem, 2014, 15, 3832-3838.	2.1	9
99	The fast polarization modulation based dual-focus fluorescence correlation spectroscopy. Optics Express, 2014, 22, 885.	3.4	7
100	Singleâ€Molecule Metalâ€Induced Energy Transfer (smMIET): Resolving Nanometer Distances at the Singleâ€Molecule Level. ChemPhysChem, 2014, 15, 705-711.	2.1	49
101	High density and ligand affinity confer ultrasensitive signal detection by a guanylyl cyclase chemoreceptor. Journal of Cell Biology, 2014, 206, 541-557.	5.2	35
102	Metal-Induced Energy Transfer. Springer Series on Fluorescence, 2014, , 265-281.	0.8	1
103	High density and ligand affinity confer ultrasensitive signal detection by a guanylyl cyclase chemoreceptor. Journal of Cell Biology, 2014, 207, 675-675.	5.2	2
104	Single-molecule fluorescence inside solid-state nanochannels. , 2014, , .		0
105	Feedback-controlled electro-kinetic traps for single-molecule spectroscopy. Pramana - Journal of Physics, 2014, 82, 121-134.	1.8	5
106	A surface-bound molecule that undergoes optically biased Brownian rotation. Nature Nanotechnology, 2014, 9, 131-136.	31.5	52
107	Metal-induced energy transfer for live cell nanoscopy. Nature Photonics, 2014, 8, 124-127.	31.4	132
108	Photoluminescence of Carbon Nanodots: Dipole Emission Centers and Electron–Phonon Coupling. Nano Letters, 2014, 14, 5656-5661.	9.1	187

#	Article	IF	CITATIONS
109	Scaling of activation energy for macroscopic flow in poly(ethylene glycol) solutions: Entangled – Non-entangled crossover. Polymer, 2014, 55, 4651-4657.	3.8	39
110	Absolute Photoluminescence Quantum Yield Measurement in a Complex Nanoscopic System with Multiple Overlapping States. Journal of Physical Chemistry Letters, 2014, 5, 1198-1202.	4.6	18
111	Pattern-Based Linear Unmixing for Efficient and Reliable Analysis of Multicomponent TCSPC Data. Springer Series on Fluorescence, 2014, , 241-263.	0.8	10
112	High density and ligand affinity confer ultrasensitive signal detection by a guanylyl cyclase chemoreceptor. Journal of General Physiology, 2014, 144, 1443OIA35.	1.9	0
113	Tip induced fluorescence quenching for nanometer optical and topographical resolution. Optical Nanoscopy, 2013, 2, .	4.0	36
114	Quantifying the Diffusion of Membrane Proteins and Peptides in Black Lipid Membranes with 2-Focus Fluorescence Correlation Spectroscopy. Biophysical Journal, 2013, 105, 455-462.	0.5	99
115	Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 21000-21005.	7.1	144
116	Flow of a nematogen past a cylindrical micro-pillar. Soft Matter, 2013, 9, 1937-1946.	2.7	26
117	Nanocavityâ€Based Determination of Absolute Values of Photoluminescence Quantum Yields. ChemPhysChem, 2013, 14, 505-513.	2.1	49
118	Quantum Yield Measurement in a Multicolor Chromophore Solution Using a Nanocavity. Nano Letters, 2013, 13, 1348-1351.	9.1	25
119	Dual-Focus Fluorescence Correlation Spectroscopy. Methods in Enzymology, 2013, 518, 175-204.	1.0	9
120	Fluorescence correlation spectroscopy (IUPAC Technical Report). Pure and Applied Chemistry, 2013, 85, 999-1016.	1.9	8
121	Molecular dissection of step 2 catalysis of yeast pre-mRNA splicing investigated in a purified system. Rna, 2013, 19, 902-915.	3.5	60
122	SOFI of GABABneurotransmitter receptors in hippocampal neurons elucidates intracellular receptor trafficking and assembly. , 2013, , .		0
123	Modification of Förster Resonance Energy Transfer Efficiencyat Interfaces. International Journal of Molecular Sciences, 2012, 13, 15227-15240.	4.1	15
124	Electrodynamic Coupling of Electric Dipole Emitters to a Fluctuating Mode Density within a Nanocavity. Physical Review Letters, 2012, 108, 163002.	7.8	28
125	Polymer Dynamics, Fluorescence Correlation Spectroscopy, and the Limits of Optical Resolution. Physical Review Letters, 2012, 108, 108101.	7.8	30
126	Temporal sampling, resetting, and adaptation orchestrate gradient sensing in sperm. Journal of Cell Biology, 2012, 198, 1075-1091.	5.2	37

#	Article	IF	CITATIONS
127	Stochastic optical fluctuation imaging. , 2012, , .		Ο
128	Prp2-mediated protein rearrangements at the catalytic core of the spliceosome as revealed by dcFCCS. Rna, 2012, 18, 1244-1256.	3.5	75
129	Superresolution Optical Fluctuation Imaging (SOFI). Advances in Experimental Medicine and Biology, 2012, 733, 17-21.	1.6	38
130	The rate of change in Ca2+ concentration controls sperm chemotaxis. Journal of Cell Biology, 2012, 196, 653-663.	5.2	88
131	Single-Molecule Fluorescence Spectroscopy of the Structure and Dynamics of the Spliceosomal Complex. Biophysical Journal, 2012, 102, 47a.	0.5	Ο
132	Quantifying the Diffusion of Membrane Proteins and Peptides in Lipid Bilayers. Biophysical Journal, 2012, 102, 87a.	0.5	0
133	Lipid Diffusion within Black Lipid Membranes Measured with Dualâ€Focus Fluorescence Correlation Spectroscopy. ChemPhysChem, 2012, 13, 990-1000.	2.1	15
134	The Origin of Heterogeneity of Polymer Dynamics near the Glass Temperature As Probed by Defocused Imaging. Macromolecules, 2011, 44, 9703-9709.	4.8	57
135	Coherence properties of a single dipole emitter in diamond. New Journal of Physics, 2011, 13, 055016.	2.9	14
136	Imaging properties of supercritical angle fluorescence optics. Optics Express, 2011, 19, 8011.	3.4	19
137	Probing the Radiative Transition of Single Molecules with a Tunable Microresonator. Nano Letters, 2011, 11, 1700-1703.	9.1	56
138	Fluorescence correlation spectroscopy as a tool for measuring the rotational diffusion of macromolecules. Chemical Physics Letters, 2011, 516, 1-11.	2.6	28
139	Fluorophore Selection for Single-Molecule Fluorescence Spectroscopy (SMFS) and Photobleaching Pathways. , 2011, , 85-92.		0
140	Dual-Focus Confocal Microscopy for Flow and Brightness Measurements. Biophysical Journal, 2010, 98, 586a.	0.5	0
141	Measuring the Evanescent Field in Tirf Microscopy Using Tilted Fluorescent Microtubules. Biophysical Journal, 2010, 98, 179a.	0.5	0
142	Image Scanning Microscopy. Physical Review Letters, 2010, 104, 198101.	7.8	383
143	Axial Nanometer Distances Measured by Fluorescence Lifetime Imaging Microscopy. Nano Letters, 2010, 10, 1497-1500.	9.1	46
144	Control of Integrin αIIbβ3 Outside-In Signaling and Platelet Adhesion by Sensing the Physical Properties of Fibrin(ogen) Substrates. Biochemistry, 2010, 49, 68-77.	2.5	27

#	Article	IF	CITATIONS
145	Achieving increased resolution and more pixels with Superresolution Optical Fluctuation Imaging (SOFI). Optics Express, 2010, 18, 18875.	3.4	187
146	Evanescent-Field-Induced Second Harmonic Generation by Noncentrosymmetric Nanoparticles. Optics Express, 2010, 18, 23218.	3.4	32
147	Dual-Focus Fluorescence Correlation Spectroscopy: Measuring Translational and Rotational Diffusion of Biomolecules. Biophysical Journal, 2010, 98, 586a.	0.5	0
148	Application of dual-focus fluorescence correlation spectroscopy to microfluidic flow-velocity measurement. Lab on A Chip, 2010, 10, 1286.	6.0	30
149	Dynamic saturation optical microscopy: employing dark-state formation kinetics for resolution enhancement. Physical Chemistry Chemical Physics, 2010, 12, 12457.	2.8	15
150	Measuring rotational diffusion of macromolecules by fluorescence correlation spectroscopy. Photochemical and Photobiological Sciences, 2010, 9, 627-636.	2.9	51
151	Controlling the optical properties of single molecules by optical confinement in a tunable microcavity. , 2009, , .		0
152	Fluorescence Correlation Spectroscopy to Study Diffusion Through Diatom Nanopores. Journal of Nanoscience and Nanotechnology, 2009, 9, 6760-6766.	0.9	9
153	Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22287-22292.	7.1	942
154	Defocused Wideâ€field Imaging Unravels Structural and Temporal Heterogeneity in Complex Systems. Advanced Materials, 2009, 21, 1079-1090.	21.0	81
155	Observing Proteins as Single Molecules Encapsulated in Surfaceâ€Tethered Polymeric Nanocontainers. ChemBioChem, 2009, 10, 702-709.	2.6	37
156	Translational Diffusion and Interaction of a Photoreceptor and Its Cognate Transducer Observed in Giant Unilamellar Vesicles by Using Dualâ€Focus FCS. ChemBioChem, 2009, 10, 1823-1829.	2.6	33
157	TIRF microscopy evanescent field calibration using tilted fluorescent microtubules. Journal of Microscopy, 2009, 234, 38-46.	1.8	38
158	Self-Diffusion and Cooperative Diffusion in Semidilute Polymer Solutions As Measured by Fluorescence Correlation Spectroscopy. Macromolecules, 2009, 42, 9537-9547.	4.8	80
159	Optical Saturation as a Versatile Tool to Enhance Resolution in Confocal Microscopy. Biophysical Journal, 2009, 97, 2623-2629.	0.5	27
160	Tuning the Fluorescence Emission Spectra of a Single Molecule with a Variable Optical Subwavelength Metal Microcavity. Physical Review Letters, 2009, 102, 073002.	7.8	65
161	Probing Protein Conformations by in Situ Non-Covalent Fluorescence Labeling. Bioconjugate Chemistry, 2009, 20, 41-46.	3.6	22
162	Remote temperature measurements in femto-liter volumes using dual-focus-Fluorescence Correlation Spectroscopy. Lab on A Chip, 2009, 9, 1248.	6.0	29

#	Article	IF	CITATIONS
163	Dual-focus fluorescence correlation spectroscopy: a robust tool for studying molecular crowding. Soft Matter, 2009, 5, 1358.	2.7	32
164	Precise Measurements of Diffusion in Solution by Fluorescence Correlations Spectroscopy. , 2009, , 243-263.		0
165	Comparison of optical saturation effects in conventional and dual-focus fluorescence correlation spectroscopy. Chemical Physics Letters, 2008, 459, 18-21.	2.6	33
166	Equilibrium Dynamics of Spermine-Induced Plasmid DNA Condensation Revealed by Fluorescence Lifetime Correlation Spectroscopy. Biophysical Journal, 2008, 94, L17-L19.	0.5	29
167	Ligand Binding Induces a Conformational Change in ifnar1 that Is Propagated to Its Membrane-Proximal Domain. Journal of Molecular Biology, 2008, 377, 725-739.	4.2	48
168	Calibrating Differential Interference Contrast Microscopy with dual-focus Fluorescence Correlation Spectroscopy. Optics Express, 2008, 16, 4322.	3.4	32
169	Tight focusing of laser beams in a \hat{l} »/2-microcavity. Optics Express, 2008, 16, 9907.	3.4	28
170	The optics and performance of dual-focus fluorescence correlation spectroscopy. Optics Express, 2008, 16, 14353.	3.4	55
171	Measuring diffusion with polarization-modulation dual-focus fluorescence correlation spectroscopy. Optics Express, 2008, 16, 14609.	3.4	20
172	Dual-Focus Fluorescence Correlation Spectroscopy of Colloidal Solutions: Influence of Particle Size. Journal of Physical Chemistry B, 2008, 112, 8236-8240.	2.6	30
173	Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy. Europhysics Letters, 2008, 83, 46001.	2.0	229
174	Experimental and theoretical evaluation of surface plasmon-coupled emission for sensitive fluorescence detection. Journal of Biomedical Optics, 2008, 13, 054021.	2.6	20
175	Latest applications for 2-focus fluorescence correlation spectroscopy. Proceedings of SPIE, 2008, , .	0.8	1
176	Defocused Imaging in Wide-field Fluorescence Microscopy. Springer Series on Fluorescence, 2007, , 257-284.	0.8	8
177	Direct observation of single molecule mobility in semidilute polymer solutions. Physical Review E, 2007, 75, 061804.	2.1	33
178	Dead-time optimized time-correlated photon counting instrument with synchronized, independent timing channels. Review of Scientific Instruments, 2007, 78, 033106.	1.3	60
179	Monitoring of small conformational changes by high-precision measurements of hydrodynamic radius with 2-focus fluorescence correlation spectroscopy (2fFCS). , 2007, , .		0
180	Orientational effects in the excitation and de-excitation of single molecules interacting with donut-mode laser beams. Optics Express, 2007, 15, 3372.	3.4	36

#	Article	IF	CITATIONS
181	Distance dependence of surface plasmon-coupled emission observed using Langmuir-Blodgett films. Applied Physics Letters, 2007, 90, 251116.	3.3	85
182	Time-resolved methods in biophysics. 3. Fluorescence lifetime correlation spectroscopy. Photochemical and Photobiological Sciences, 2007, 6, 13-18.	2.9	66
183	Exploring Fluorescence Antibunching in Solution To Determine the Stoichiometry of Molecular Complexes. Analytical Chemistry, 2007, 79, 4040-4049.	6.5	49
184	Nucleotide Specificity versus Complex Heterogeneity in Exonuclease Activity Measurements. Biophysical Journal, 2007, 92, 1556-1558.	0.5	3
185	Origin of Simultaneous Donorâ^'Acceptor Emission in Single Molecules of Peryleneimideâ^'Terrylenediimide Labeled Polyphenylene Dendrimers. Journal of Physical Chemistry B, 2007, 111, 708-719.	2.6	52
186	Two-Focus Fluorescence Correlation Spectroscopy: A New Tool for Accurate and Absolute Diffusion Measurements. ChemPhysChem, 2007, 8, 433-443.	2.1	312
187	Collapsed But Not Folded: Looking with Advanced Optical Spectroscopy at Protein Folding. ChemPhysChem, 2007, 8, 1607-1609.	2.1	5
188	Fluorescence-Emission Control of Single CdSe Nanocrystals Using Gold-Modified AFM Tips. Small, 2007, 3, 44-49.	10.0	28
189	Fluorescence correlation spectroscopy in cells: Confinement and excluded volume effects. Experimental and Molecular Pathology, 2007, 82, 142-146.	2.1	11
190	Surface Sticking and Lateral Diffusion of Lipids in Supported Bilayers. Langmuir, 2006, 22, 9339-9344.	3.5	37
191	Fluorescence Lifetime Correlation Spectroscopy Combined with Lifetime Tuning:Â New Perspectives in Supported Phospholipid Bilayer Research. Langmuir, 2006, 22, 9580-9585.	3.5	67
192	Polarization effect on position accuracy of fluorophore localization. Optics Express, 2006, 14, 8111.	3.4	180
193	Visualizing spatial and temporal heterogeneity of single molecule rotational diffusion in a glassy polymer by defocused wide-field imaging. Polymer, 2006, 47, 2511-2518.	3.8	130
194	Fluorescence Lifetime Correlation Spectroscopy. Journal of Fluorescence, 2006, 17, 43-48.	2.5	157
195	Defocused orientation and position imaging (DOPI) of myosin V. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6495-6499.	7.1	217
196	Art and artifacts of fluorescence correlation spectroscopy. , 2005, , .		5
197	Dependence of the optical saturation of fluorescence on rotational diffusion. Chemical Physics Letters, 2005, 410, 452-456.	2.6	10
198	Optical Saturation in Fluorescence Correlation Spectroscopy under Continuous-Wave and Pulsed Excitation. ChemPhysChem, 2005, 6, 164-170.	2.1	103

#	Article	IF	CITATIONS
199	Performance of Fluorescence Correlation Spectroscopy for Measuring Diffusion and Concentration. ChemPhysChem, 2005, 6, 2324-2336.	2.1	204
200	Statistical Analysis of Diffusion Coefficient Determination by Fluorescence Correlation Spectroscopy. Journal of Fluorescence, 2005, 15, 415-422.	2.5	32
201	Response to "Comment on †Theoretical study of single molecule fluorescence in a metallic nanocavity'―[Appl. Phys. Lett. 87, 066101 (2005)]. Applied Physics Letters, 2005, 87, 066102.	3.3	2
202	Using fluorescence lifetime for discriminating detector afterpulsing in fluorescence-correlation spectroscopy. Review of Scientific Instruments, 2005, 76, 033102.	1.3	91
203	Defocused imaging of quantum-dot angular distribution of radiation. Applied Physics Letters, 2005, 87, 101103.	3.3	57
204	Breaking the diffraction limit with dynamic saturation optical microscopy. Applied Physics Letters, 2005, 87, 094105.	3.3	41
205	The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection. Optics Express, 2005, 13, 8855.	3.4	93
206	Measuring large numerical apertures by imaging the angular distribution of radiation of fluorescing molecules. Optics Express, 2005, 13, 9409.	3.4	27
207	Focusing astigmatic Gaussian beams through optical systems with a high numerical aperture. Optics Letters, 2005, 30, 2527.	3.3	20
208	Cell-Transistor Coupling: Investigation of Potassium Currents Recorded with p- and n-Channel FETs. Biophysical Journal, 2005, 89, 3628-3638.	0.5	63
209	Fluorescence Lifetimes and Emission Patterns Probe the 3D Orientation of the Emitting Chromophore in a Multichromophoric System. Journal of the American Chemical Society, 2004, 126, 14310-14311.	13.7	59
210	Implementation of Neural Networks for the Identification of Single Molecules. Journal of Physical Chemistry A, 2004, 108, 4799-4804.	2.5	4
211	Image Analysis of Defocused Single-Molecule Images for Three-Dimensional Molecule Orientation Studies. Journal of Physical Chemistry A, 2004, 108, 6836-6841.	2.5	173
212	Unified operator approach for deriving Hermite–Gaussian and Laguerre–Gaussian laser modes. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2004, 21, 1553.	1.5	81
213	Art and Artefacts of Fluorescence Correlation Spectroscopy. Current Pharmaceutical Biotechnology, 2004, 5, 155-161.	1.6	177
214	Recent Advances in Single Molecule Fluorescence Spectroscopy. , 2004, , 121-163.		0
215	Fluorescence Spectroscopy of Single Molecules under Ambient Conditions: Methodology and Technology. ChemPhysChem, 2003, 4, 792-808.	2.1	94
216	Measurement of Submicrosecond Intramolecular Contact Formation in Peptides at the Single-Molecule Level. Journal of the American Chemical Society, 2003, 125, 5324-5330.	13.7	138

#	Article	IF	CITATIONS
217	Time-Resolved Luminescence Imaging of Hydrogen Peroxide Using Sensor Membranes in a Microwell Format. Applied Spectroscopy, 2003, 57, 1386-1392.	2.2	49
218	Influence of interface–dipole interactions on the efficiency of fluorescence light collection near surfaces. Optics Letters, 2003, 28, 941.	3.3	31
219	Orientation imaging of single molecules by wide-field epifluorescence microscopy. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 554.	2.1	330
220	Fast calculation of fluorescence correlation data with asynchronous time-correlated single-photon counting. Optics Express, 2003, 11, 3583.	3.4	138
221	Multiparameter single-molecule fluorescence measurements of DNA intercalating fluorophores. , 2003, , .		0
222	Ab initio modeling of fluorescence fluctuation spectroscopy. , 2003, , .		1
223	Single-molecule Fluorescence Spectroscopy of TOTO on Poly-AT and Poly-GC DNA¶. Photochemistry and Photobiology, 2003, 78, 576-581.	2.5	0
224	Single-molecule Fluorescence Spectroscopy of TOTO on Poly-AT and Poly-GC DNA¶. Photochemistry and Photobiology, 2003, 78, 576.	2.5	12
225	Theoretical study of single molecule fluorescence in a metallic nanocavity. Applied Physics Letters, 2002, 80, 315-317.	3.3	92
226	Fluorescence lifetime imaging system with nm-resolution and single-molecule sensitivity. , 2002, 4634, 104.		1
227	Radiative decay engineering: new vistas for fluorescent materials with exceptional properties. , 2002, 4634, 112.		0
228	Spectral properties of a fluorescing molecule within a spherical metallic nanocavityPresented at the LANMAT 2001 Conference on the Interaction of Laser Radiation with Matter at Nanoscopic Scales: From Single Molecule Spectroscopy to Materials Processing, Venice, 3–6 October, 2001 Physical Chemistry Chemical Physics, 2002, 4, 2780-2786.	2.8	58
229	Time-resolved fluorescence correlation spectroscopy. Chemical Physics Letters, 2002, 353, 439-445.	2.6	159
230	Optimal Algorithm for Single-Molecule Identification with Time-Correlated Single-Photon Counting. Journal of Physical Chemistry A, 2001, 105, 48-53.	2.5	43
231	Time-resolved confocal scanning device for ultrasensitive fluorescence detection. Review of Scientific Instruments, 2001, 72, 4145-4152.	1.3	84
232	Positional and Temporal Accuracy of Single Molecule Tracking. Single Molecules, 2000, 1, 225-230.	0.9	16
233	Title is missing!. Nonlinear Dynamics, Psychology, and Life Sciences, 2000, 4, 135-152.	0.2	18
234	Tracking of fluorescent molecules diffusing within membranes. Applied Physics B: Lasers and Optics, 2000, 71, 773-777.	2.2	107

#	Article	IF	CITATIONS
235	Theoretical study of detection of a dipole emitter through an objective with high numerical aperture. Optics Letters, 2000, 25, 634.	3.3	99
236	A Theoretical Investigation of Single-Molecule Fluorescence Detection on Thin Metallic Layers. Biophysical Journal, 2000, 78, 2151-2158.	0.5	72
237	Forbidden Light Detection from Single Molecules. Analytical Chemistry, 2000, 72, 2117-2123.	6.5	76
238	Positional and Temporal Accuracy of Single Molecule Tracking. , 2000, 1, 225.		1
239	New Approach to Fluorescence Spectroscopy of Individual Molecules on Surfaces. Physical Review Letters, 1999, 83, 3804-3807.	7.8	7
240	Single-molecule fluorescence near a metal layer. Chemical Physics, 1999, 247, 1-9.	1.9	108
241	Fluorescence detection of single molecules near a solution/glass interface – an electrodynamic analysis. Chemical Physics Letters, 1999, 308, 263-266.	2.6	25
242	Single molecule fluorescence in ultrathin capillaries: an electrodynamic study. Chemical Physics Letters, 1999, 301, 430-434.	2.6	11
243	Theoretical investigation of aspects of single-molecule fluorescence detection in microcapillaries. , 1999, 36, 195-199.		6
244	Highly efficient optical detection of surface-generated fluorescence. Applied Optics, 1999, 38, 724.	2.1	155
245	Fluorescence detection of single molecules applicable to small volume assays. , 1999, , 311-329.		3
246	Comparison between time-correlated single photon counting and fluorescence correlation spectroscopy in single molecule identification. Bioimaging, 1998, 6, 3-13.	1.3	13
247	Efficient detection of single molecules eluting off an optically trapped microsphere. Bioimaging, 1998, 6, 33-42.	1.3	20
248	Molecular Shot Noise, Burst Size Distribution, and Single-Molecule Detection in Fluid Flow:Â Effects of Multiple Occupancy. Journal of Physical Chemistry A, 1998, 102, 6089-6094.	2.5	49
249	<title>Probing the heterogeneous fluorescence-lifetime behavior of single rhodamine-6G molecules on fused silica</title> . , 1998, , .		0
250	Statistics of Single-Molecule Detection. Journal of Physical Chemistry B, 1997, 101, 3626-3632.	2.6	36
251	Optical collection efficiency function in single-molecule detection experiments. Applied Optics, 1997, 36, 5298.	2.1	18
252	Fast fitting of multi-exponential decay curves. Optics Communications, 1997, 134, 371-378.	2.1	154

#	Article	IF	CITATIONS
253	Fluorescence photon antibunching from single molecules on a surface. Chemical Physics Letters, 1997, 269, 365-370.	2.6	91
254	A maximum likelihood estimator to distinguish single molecules by their fluorescence decays. Chemical Physics Letters, 1997, 270, 464-470.	2.6	77
255	The statistics of single molecule detection: An overview. Bioimaging, 1997, 5, 88-98.	1.3	37
256	An all solidâ€state nearâ€infrared timeâ€correlated single photon counting instrument for dynamic lifetime measurements in DNA sequencing applications. Review of Scientific Instruments, 1996, 67, 3984-3989.	1.3	42
257	Maximum-likelihood criterion and single-molecule detection. Applied Optics, 1995, 34, 514.	2.1	17
258	Single Molecule Detection in Liquids and on Surfaces under Ambient Conditions: Introduction and Historical Overview. , 0, , 1-19.		2
259	Single Molecule Detection of Specific Nucleic Acid Sequences. , 0, , 303-321.		2
260	Single Molecule Detection in the Near-Infrared. , 0, , 323-362.		4
261	Theoretical Foundations of Single Molecule Detection in Solution. , 0, , 21-67.		3
262	Surface-Enhanced Raman Scattering (SERS) – A Tool for Single Molecule Detection in Solution. , 0, , 121-144.		4
263	Single Molecule Detection on Surfaces with the Confocal Laser Scanning Microscope. , 0, , 145-183.		8
264	Spectroscopy of Individual Photosynthetic Pigment-Protein Complexes. , 0, , 185-229.		1
265	Single Dye Tracing for Ultrasensitive Microscopy on Living Cells. , 0, , 231-245.		3
266	Single Molecule Identification in Solution: Principles and Applications. , 0, , 247-272.		0
267	Studying Molecular Motors on the Single Molecule Level. , 0, , 273-292.		3
268	Conceptual Basis of Fluorescence Correlation Spectroscopy and Related Techniques as Tools in Bioscience. , 0, , 69-120.		26
269	Excited state lifetime modulation in semiconductor nanocrystals for super-resolution imaging. Nanotechnology, 0, , .	2.6	1