## **Thomas H Oliver**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4392200/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Biodiversity and Resilience of Ecosystem Functions. Trends in Ecology and Evolution, 2015, 30, 673-684.                                                                                                                                                                                    | 8.7  | 916       |
| 2  | Interactions between climate change and land use change onÂbiodiversity: attribution problems, risks,<br>and opportunities. Wiley Interdisciplinary Reviews: Climate Change, 2014, 5, 317-335.                                                                                             | 8.1  | 333       |
| 3  | Declining resilience of ecosystem functions under biodiversity loss. Nature Communications, 2015, 6, 10122.                                                                                                                                                                                | 12.8 | 246       |
| 4  | Heterogeneous landscapes promote population stability. Ecology Letters, 2010, 13, 473-484.                                                                                                                                                                                                 | 6.4  | 233       |
| 5  | Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies.<br>Nature Climate Change, 2015, 5, 941-945.                                                                                                                                              | 18.8 | 186       |
| 6  | Protected areas facilitate species' range expansions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14063-14068.                                                                                                                             | 7.1  | 185       |
| 7  | Longâ€term changes to the frequency of occurrence of British moths are consistent with opposing and synergistic effects of climate and landâ€use changes. Journal of Applied Ecology, 2014, 51, 949-957.                                                                                   | 4.0  | 175       |
| 8  | Predicting insect phenology across space and time. Global Change Biology, 2011, 17, 1289-1300.                                                                                                                                                                                             | 9.5  | 118       |
| 9  | Resilience and food security: rethinking an ecological concept. Journal of Ecology, 2017, 105, 880-884.                                                                                                                                                                                    | 4.0  | 114       |
| 10 | A framework for assessing threats and benefits to species responding to climate change. Methods in Ecology and Evolution, 2011, 2, 125-142.                                                                                                                                                | 5.2  | 109       |
| 11 | Geographical range margins of many taxonomic groups continue to shift polewards. Biological<br>Journal of the Linnean Society, 2015, 115, 586-597.                                                                                                                                         | 1.6  | 105       |
| 12 | Changes in habitat specificity of species at their climatic range boundaries. Ecology Letters, 2009, 12,<br>1091-1102.                                                                                                                                                                     | 6.4  | 101       |
| 13 | The importance of landscape characteristics for the delivery of cultural ecosystem services. Journal of Environmental Management, 2018, 206, 1145-1154.                                                                                                                                    | 7.8  | 90        |
| 14 | Habitat availability explains variation in climate-driven range shifts across multiple taxonomic<br>groups. Scientific Reports, 2019, 9, 15039.                                                                                                                                            | 3.3  | 85        |
| 15 | Forest management effects on carabid beetle communities in coniferous and broadleaved forests: implications for conservation. Insect Conservation and Diversity, 2008, 1, 242-252.                                                                                                         | 3.0  | 69        |
| 16 | Overcoming undesirable resilience in the global food system. Global Sustainability, 2018, 1, .                                                                                                                                                                                             | 3.3  | 66        |
| 17 | Population resilience to an extreme drought is influenced by habitat area and fragmentation in the local landscape. Ecography, 2013, 36, 579-586.                                                                                                                                          | 4.5  | 62        |
| 18 | The effects of host plant on the coccinellid functional response: Is the conifer specialist Aphidecta obliterata (L.) (Coleoptera: Coccinellidae) better adapted to spruce than the generalist Adalia bipunctata (L.) (Coleoptera: Coccinellidae)?. Biological Control, 2008, 47, 273-281. | 3.0  | 61        |

| #  | Article                                                                                                                                                                                     | IF                | CITATIONS           |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|
| 19 | Defining and delivering resilient ecological networks: Nature conservation in England. Journal of Applied Ecology, 2018, 55, 2537-2543.                                                     | 4.0               | 56                  |
| 20 | Environmental drivers of annual population fluctuations in a trans-Saharan insect migrant.<br>Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . | 7.1               | 56                  |
| 21 | A decision framework for considering climate change adaptation in biodiversity conservation planning. Journal of Applied Ecology, 2012, 49, 1247-1255.                                      | 4.0               | 54                  |
| 22 | Evidence for intermittency and a truncated power law from highly resolved aphid movement data.<br>Journal of the Royal Society Interface, 2010, 7, 199-208.                                 | 3.4               | 53                  |
| 23 | Similarities in butterfly emergence dates among populations suggest local adaptation to climate.<br>Global Change Biology, 2015, 21, 3313-3322.                                             | 9.5               | 53                  |
| 24 | The effectiveness of protected areas in the conservation of species with changing geographical ranges. Biological Journal of the Linnean Society, 2015, 115, 707-717.                       | 1.6               | 53                  |
| 25 | Large extents of intensive land use limit community reorganization during climate warming. Global Change Biology, 2017, 23, 2272-2283.                                                      | 9.5               | 52                  |
| 26 | Habitat associations of species show consistent but weak responses to climate. Biology Letters, 2012,<br>8, 590-593.                                                                        | 2.3               | 49                  |
| 27 | Population density but not stability can be predicted from species distribution models. Journal of Applied Ecology, 2012, 49, 581-590.                                                      | 4.0               | 49                  |
| 28 | European butterfly populations vary in sensitivity to weather across their geographical ranges.<br>Global Ecology and Biogeography, 2017, 26, 1374-1385.                                    | 5.8               | 48                  |
| 29 | Potential landscapeâ€scale pollinator networks across Great Britain: structure, stability and influence<br>of agricultural land cover. Ecology Letters, 2018, 21, 1821-1832.                | 6.4               | 48                  |
| 30 | A regionally informed abundance index for supporting integrative analyses across butterfly monitoring schemes. Journal of Applied Ecology, 2016, 53, 501-510.                               | 4.0               | 47                  |
| 31 | Avoidance responses of an aphidophagous ladybird, <i>Adalia bipunctata</i> , to aphidâ€ŧending ants.<br>Ecological Entomology, 2008, 33, 523-528.                                           | 2.2               | 46                  |
| 32 | Macroevolutionary patterns in the origin of mutualisms involving ants. Journal of Evolutionary<br>Biology, 2008, 21, 1597-1608.                                                             | 1.7               | 44                  |
| 33 | Ant semiochemicals limit apterous aphid dispersal. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 3127-3131.                                                           | 2.6               | 36                  |
| 34 | A national-scale assessment of climate change impacts on species: Assessing the balance of risks and opportunities for multiple taxa. Biological Conservation, 2017, 213, 124-134.          | 4.1               | 35                  |
| 35 | Oviposition responses to patch quality in the larch ladybird Aphidecta obliterata (Coleoptera:) Tj ETQq1 1 0.7843<br>Research, 2006, 96, 25-34.                                             | 14 rgBT /(<br>1.0 | Overlock 10 1<br>33 |
| 36 | Towards a bridging concept for undesirable resilience in social-ecological systems. Global<br>Sustainability, 2020, 3, .                                                                    | 3.3               | 33                  |

| #  | Article                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Reduced variability in rangeâ€edge butterfly populations over three decades of climate warming. Global<br>Change Biology, 2012, 18, 1531-1539.                        | 9.5  | 32        |
| 38 | Tolerance traits and the stability of mutualism. Oikos, 2009, 118, 346-352.                                                                                           | 2.7  | 31        |
| 39 | The influence of landscape composition and configuration on crop yield resilience. Journal of Applied Ecology, 2020, 57, 2180-2190.                                   | 4.0  | 30        |
| 40 | Habitat associations of thermophilous butterflies are reduced despite climatic warming. Global<br>Change Biology, 2012, 18, 2720-2729.                                | 9.5  | 29        |
| 41 | The pitfalls of ecological forecasting. Biological Journal of the Linnean Society, 2015, 115, 767-778.                                                                | 1.6  | 29        |
| 42 | Knowledge architecture for the wise governance of sustainability transitions. Environmental Science and Policy, 2021, 126, 152-163.                                   | 4.9  | 29        |
| 43 | Synchrony of butterfly populations across species' geographic ranges. Oikos, 2010, 119, 1690-1696.                                                                    | 2.7  | 27        |
| 44 | Are existing biodiversity conservation strategies appropriate in a changing climate?. Biological Conservation, 2016, 193, 17-26.                                      | 4.1  | 27        |
| 45 | How much biodiversity loss is too much?. Science, 2016, 353, 220-221.                                                                                                 | 12.6 | 26        |
| 46 | Effects of Natura 2000 on nontarget bird and butterfly species based on citizen science data.<br>Conservation Biology, 2020, 34, 666-676.                             | 4.7  | 25        |
| 47 | Measuring functional connectivity using longâ€ŧerm monitoring data. Methods in Ecology and<br>Evolution, 2011, 2, 527-533.                                            | 5.2  | 24        |
| 48 | Using ecological and field survey data to establish a national list of the wild bee pollinators of crops. Agriculture, Ecosystems and Environment, 2021, 315, 107447. | 5.3  | 24        |
| 49 | A nationalâ€scale model of linear features improves predictions of farmland biodiversity. Journal of<br>Applied Ecology, 2017, 54, 1776-1784.                         | 4.0  | 22        |
| 50 | Can site and landscapeâ€scale environmental attributes buffer bird populations against weather events?. Ecography, 2014, 37, 872-882.                                 | 4.5  | 21        |
| 51 | Latitudinal gradients in butterfly population variability are influenced by landscape heterogeneity.<br>Ecography, 2014, 37, 863-871.                                 | 4.5  | 21        |
| 52 | The utility of distribution data in predicting phenology. Methods in Ecology and Evolution, 2013, 4, 1024-1032.                                                       | 5.2  | 19        |
| 53 | Large reorganizations in butterfly communities during an extreme weather event. Ecography, 2017, 40, 577-585.                                                         | 4.5  | 18        |
| 54 | Where and why are species' range shifts hampered by unsuitable landscapes?. Global Change Biology, 2022, 28, 4765-4774.                                               | 9.5  | 16        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Towards a measure of functional connectivity: local synchrony matches small scale movements in a woodland edge butterfly. Landscape Ecology, 2012, 27, 1109-1120.                                       | 4.2 | 14        |
| 56 | Big Data and Ecosystem Research Programmes. Advances in Ecological Research, 2014, 51, 41-77.                                                                                                           | 2.7 | 14        |
| 57 | A Synthesis is Emerging between Biodiversity–Ecosystem Function and Ecological Resilience Research:<br>Reply to Mori. Trends in Ecology and Evolution, 2016, 31, 89-92.                                 | 8.7 | 14        |
| 58 | Multi-taxa spatial conservation planning reveals similar priorities between taxa and improved protected area representation with climate change. Biodiversity and Conservation, 2022, 31, 683-702.      | 2.6 | 13        |
| 59 | When are ant-attractant devices a worthwhile investment? Vicia faba extrafloral nectaries and Lasius niger ants. Population Ecology, 2007, 49, 265-273.                                                 | 1.2 | 12        |
| 60 | Assessing species' habitat associations from occurrence records, standardised monitoring data and expert opinion: A test with British butterflies. Ecological Indicators, 2016, 62, 271-278.            | 6.3 | 12        |
| 61 | Developing a biodiversityâ€based indicator for largeâ€scale environmental assessment: a case study of<br>proposed shale gas extraction sites in Britain. Journal of Applied Ecology, 2017, 54, 872-882. | 4.0 | 12        |
| 62 | Ant Larval Demand Reduces Aphid Colony Growth Rates in an Ant-Aphid Interaction. Insects, 2012, 3, 120-130.                                                                                             | 2.2 | 11        |
| 63 | Spatial variation in the magnitude and functional form of densityâ€dependent processes on the large<br>skipper butterfly <i>Ochlodes sylvanus</i> . Ecological Entomology, 2013, 38, 608-616.           | 2.2 | 11        |
| 64 | Inventorying and monitoring crop pollinating bees: Evaluating the effectiveness of common sampling methods. Insect Conservation and Diversity, 2022, 15, 299-311.                                       | 3.0 | 11        |
| 65 | Diversity of response and effect traits provides complementary information about avian community dynamics linked to ecological function. Functional Ecology, 2021, 35, 1938-1950.                       | 3.6 | 10        |
| 66 | Numerical abundance of invasive ants and monopolisation of exudateâ€producing resources – a chicken and egg situation. Insect Conservation and Diversity, 2008, 1, 208-214.                             | 3.0 | 9         |
| 67 | Synchrony in population counts predicts butterfly movement frequencies. Ecological Entomology, 2017, 42, 375-378.                                                                                       | 2.2 | 9         |
| 68 | Population variability in species can be deduced from opportunistic citizen science records: a case study using British butterflies. Insect Conservation and Diversity, 2018, 11, 131-142.              | 3.0 | 9         |
| 69 | Local adaptation to climate anomalies relates to species phylogeny. Communications Biology, 2022, 5, 143.                                                                                               | 4.4 | 9         |
| 70 | Predicting resilience of ecosystem functioning from coâ€varying species' responses to environmental change. Ecology and Evolution, 2019, 9, 11775-11790.                                                | 1.9 | 8         |
| 71 | Transformation archetypes in global food systems. Sustainability Science, 2022, 17, 1827-1840.                                                                                                          | 4.9 | 8         |
| 72 | Feeding behaviour of the black pine beetle, Hylastes ater (Coleoptera: Scolytidae). Agricultural and<br>Forest Entomology, 2007, 9, 115-124.                                                            | 1.3 | 6         |

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Effect of humidity and temperature on the performance of three strains of Aphalara itadori, a<br>biocontrol agent for Japanese Knotweed. Biological Control, 2020, 146, 104269. | 3.0 | 6         |
| 74 | Preâ€dispersal seed predation could help explain premature fruit drop in a tropical forest. Journal of<br>Ecology, 2022, 110, 751-761.                                          | 4.0 | 5         |
| 75 | The influence of chalk grasslands on butterfly phenology and ecology. Ecology and Evolution, 2021, 11, 14521-14539.                                                             | 1.9 | 0         |
| 76 | Developing a national indicator of functional connectivity. Ecological Indicators, 2022, 136, 108610.                                                                           | 6.3 | 0         |