Peter R Tentscher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4392157/publications.pdf

Version: 2024-02-01

759233 1058476 14 550 12 14 citations h-index g-index papers 14 14 14 801 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Further transformation of the primary ozonation products of tramadol- and venlafaxine N-oxide: Mechanistic and structural considerations. Science of the Total Environment, 2022, 845, 157259.	8.0	1
2	Toxic effects of substituted p-benzoquinones and hydroquinones in in vitro bioassays are altered by reactions with the cell assay medium. Water Research, 2021, 202, 117415.	11.3	15
3	Reactions of pyrrole, imidazole, and pyrazole with ozone: kinetics and mechanisms. Environmental Science: Water Research and Technology, 2020, 6, 976-992.	2.4	20
4	Micropollutant Oxidation Studied by Quantum Chemical Computations: Methodology and Applications to Thermodynamics, Kinetics, and Reaction Mechanisms. Accounts of Chemical Research, 2019, 52, 605-614.	15.6	50
5	Gas-Phase Ozone Reactions with a Structurally Diverse Set of Molecules: Barrier Heights and Reaction Energies Evaluated by Coupled Cluster and Density Functional Theory Calculations. Journal of Physical Chemistry A, 2019, 123, 517-536.	2.5	13
6	Ozonation of <i>Para</i> Substituted Phenolic Compounds Yields <i>p</i> Benzoquinones, Other Cyclic $\hat{l}\pm,\hat{l}^2$ -Unsaturated Ketones, and Substituted Catechols. Environmental Science & Environmenta	10.0	91
7	Exploring the Aqueous Vertical Ionization of Organic Molecules by Molecular Simulation and Liquid Microjet Photoelectron Spectroscopy. Journal of Physical Chemistry B, 2015, 119, 238-256.	2.6	32
8	Explicit solvent simulations of the aqueous oxidation potential and reorganization energy for neutral molecules: gas phase, linear solvent response, and non-linear response contributions. Physical Chemistry Chemical Physics, 2015, 17, 14811-14826.	2.8	19
9	On the Nature of Interactions of Radicals with Polar Molecules. Journal of Physical Chemistry A, 2013, 117, 12560-12568.	2.5	12
10	Reactivity of BrCl, Br ₂ , BrOCl, Br ₂ O, and HOBr Toward Dimethenamid in Solutions of Bromide + Aqueous Free Chlorine. Environmental Science & Environmenta	10.0	75
11	Binding in Radical-Solvent Binary Complexes: Benchmark Energies and Performance of Approximate Methods. Journal of Chemical Theory and Computation, 2013, 9, 1568-1579.	5.3	46
12	Aqueous Oxidation of Sulfonamide Antibiotics: Aromatic Nucleophilic Substitution of an Aniline Radical Cation. Chemistry - A European Journal, 2013, 19, 11216-11223.	3.3	56
13	Geometries and Vibrational Frequencies of Small Radicals: Performance of Coupled Cluster and More Approximate Methods. Journal of Chemical Theory and Computation, 2012, 8, 2165-2179.	5.3	42
14	Carbon, Hydrogen, and Nitrogen Isotope Fractionation During Light-Induced Transformations of Atrazine. Environmental Science &	10.0	78