Alexander I TartakovskiǕ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4392099/publications.pdf

Version: 2024-02-01

137 papers 8,154 citations

45 h-index 89 g-index

140 all docs

140 docs citations

140 times ranked

8941 citing authors

#	Article	IF	Citations
1	Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nature Materials, 2015, 14, 301-306.	27.5	1,397
2	Resonantly hybridized excitons in moir \tilde{A} superlattices in van der Waals heterostructures. Nature, 2019, 567, 81-86.	27.8	621
3	Continuous Wave Observation of Massive Polariton Redistribution by Stimulated Scattering in Semiconductor Microcavities. Physical Review Letters, 2000, 85, 3680-3683.	7.8	401
4	Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities. Nature Communications, 2015, 6, 8579.	12.8	377
5	Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature. Nature Communications, 2017, 8, 1296.	12.8	290
6	WSe ₂ Light-Emitting Tunneling Transistors with Enhanced Brightness at Room Temperature. Nano Letters, 2015, 15, 8223-8228.	9.1	231
7	Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation. Physical Review B, 2000, 62, R16247-R16250.	3.2	222
8	Nuclear spin effects in semiconductor quantum dots. Nature Materials, 2013, 12, 494-504.	27.5	195
9	Valley-addressable polaritons in atomically thin semiconductors. Nature Photonics, 2017, 11, 497-501.	31.4	169
10	Inversion of exciton level splitting in quantum dots. Physical Review B, 2005, 72, .	3.2	167
11	Relaxation bottleneck and its suppression in semiconductor microcavities. Physical Review B, 2000, 62, R2283-R2286.	3.2	147
12	Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates. Scientific Reports, 2013, 3, 3489.	3.3	144
13	Observation of multicharged excitons and biexcitons in a single InGaAs quantum dot. Physical Review B, 2001, 63, .	3.2	142
14	Two-Dimensional Metal–Chalcogenide Films in Tunable Optical Microcavities. Nano Letters, 2014, 14, 7003-7008.	9.1	129
15	Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum. Light: Science and Applications, 2020, 9, 56.	16.6	124
16	Nuclear Spin Switch in Semiconductor Quantum Dots. Physical Review Letters, 2007, 98, 026806.	7.8	122
17	All-Optical Formation of Coherent Dark States of Silicon-Vacancy Spins in Diamond. Physical Review Letters, 2014, 113, 263601.	7.8	121

Exciton and trion dynamics in atomically thin<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoSe</mml:mi><mml:mn>2</mml:mpsub></mre>
xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>WSe</mml:mi><mml:mn>2</mml:msub></mre>
Effect of localization. Physical Review B, 2016, 94, .

#	Article	IF	CITATIONS
19	Nonlinear dynamics of polariton scattering in semiconductor microcavity: Bistability vs. stimulated scattering. Europhysics Letters, 2004, 67, 997-1003.	2.0	113
20	Quantum-confined Stark shifts of charged exciton complexes in quantum dots. Physical Review B, 2004, 70, .	3.2	108
21	Manipulating molecules with strong coupling: harvesting triplet excitons in organic exciton microcavities. Chemical Science, 2020, 11, 343-354.	7.4	98
22	Direct Measurement of the Hole-Nuclear Spin Interaction in Single <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>InP</mml:mi><mml:mo>/</mml:mo><mml:mi>GalnP</mml:mi></mml:math> Quantum Dots Using Photoluminescence Spectroscopy. Physical Review Letters, 2011, 106, 027402.	7.8	93
23	Transition from strong to weak coupling and the onset of lasing in semiconductor microcavities. Physical Review B, 2002, 65, .	3.2	91
24	Enhanced light-matter interaction in an atomically thin semiconductor coupled with dielectric nano-antennas. Nature Communications, 2019, 10, 5119.	12.8	87
25	Highly nonlinear trion-polaritons in a monolayer semiconductor. Nature Communications, 2020, 11, 3589.	12.8	83
26	Polariton-polariton scattering in semiconductor microcavities: Distinctive features and similarities to the three-dimensional case. Physical Review B, 2000, 62, R13298-R13301.	3.2	80
27	Effect of thermal annealing and strain engineering on the fine structure of quantum dot excitons. Physical Review B, 2004, 70, .	3.2	78
28	Single-photon emitters in GaSe. 2D Materials, 2017, 4, 021010.	4.4	77
29	Dynamics of Coherent and Incoherent Spin Polarizations in Ensembles of Quantum Dots. Physical Review Letters, 2004, 93, 057401.	7.8	76
30	Photoluminescence of two-dimensional GaTe and GaSe films. 2D Materials, 2015, 2, 035010.	4.4	76
31	Imaging of Interlayer Coupling in van der Waals Heterostructures Using a Bright-Field Optical Microscope. Nano Letters, 2017, 17, 5342-5349.	9.1	74
32	Comparative study of InGaAs quantum dot lasers with different degrees of dot layer confinement. Applied Physics Letters, 2002, 81, 1-3.	3.3	72
33	On-Chip Waveguide Coupling of a Layered Semiconductor Single-Photon Source. Nano Letters, 2017, 17, 5446-5451.	9.1	72
34	Element-sensitive measurement of the hole–nuclear spin interaction in quantum dots. Nature Physics, 2013, 9, 74-78.	16.7	70
35	Electrically pumped single-defect light emitters in WSe ₂ . 2D Materials, 2016, 3, 025038.	4.4	66
36	Valley coherent exciton-polaritons in a monolayer semiconductor. Nature Communications, 2018, 9, 4797.	12.8	66

#	Article	IF	CITATIONS
37	Structural analysis of strained quantum dots using nuclear magnetic resonance. Nature Nanotechnology, 2012, 7, 646-650.	31.5	65
38	Individual neutral and chargedInxGa1â^'xAsâ^'GaAsquantum dots with strong in-plane optical anisotropy. Physical Review B, 2005, 72, .	3.2	61
39	Pumping of Nuclear Spins by Optical Excitation of Spin-Forbidden Transitions in a Quantum Dot. Physical Review Letters, 2010, 104, 066804.	7.8	61
40	Continuum transitions and phonon coupling in single self-assembled Stranski-Krastanow quantum dots. Physical Review B, 2003, 68, .	3.2	59
41	Excitons in 2D heterostructures. Nature Reviews Physics, 2020, 2, 8-9.	26.6	57
42	The valley Zeeman effect in inter- and intra-valley trions in monolayer WSe2. Nature Communications, 2019, 10, 2330.	12.8	55
43	Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain. Nature Communications, 2015, 6, 6348.	12.8	54
44	Interplay between spin proximity effect and charge-dependent exciton dynamics in MoSe2/CrBr3 van der Waals heterostructures. Nature Communications, 2020, 11, 6021.	12.8	52
45	Raman scattering in strongly coupled organic semiconductor microcavities. Physical Review B, 2001, 63, .	3.2	50
46	Optical orientation and control of spin memory in individual InGaAs quantum dots. Physical Review B, 2005, 72, .	3.2	43
47	Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning. Applied Physics Letters, 2012, 100, .	3.3	42
48	Polariton parametric scattering processes in semiconductor microcavities observed in continuous wave experiments. Physical Review B, 2002, 65, .	3.2	41
49	Nonlinearities in emission from the lower polariton branch of semiconductor microcavities. Physical Review B, 1999, 60, R11293-R11296.	3.2	38
50	Giant enhancement of polariton relaxation in semiconductor microcavities by polariton-free carrier interaction:â€fExperimental evidence and theory. Physical Review B, 2003, 67, .	3.2	36
51	Bright single photon emitters with enhanced quantum efficiency in a two-dimensional semiconductor coupled with dielectric nano-antennas. Nature Communications, 2021, 12, 6063.	12.8	36
52	Exciton-photon coupling in photonic wires. Physical Review B, 1998, 57, R6807-R6810.	3.2	33
53	Ill–V quantum light source and cavity-QED on Silicon. Scientific Reports, 2013, 3, 1239.	3.3	33
54	Fast control of nuclear spin polarization in an optically pumped single quantum dot. Nature Materials, 2011, 10, 844-848.	27. 5	31

#	Article	IF	CITATIONS
55	Effect of a GaAsP Shell on the Optical Properties of Self-Catalyzed GaAs Nanowires Grown on Silicon. Nano Letters, 2012, 12, 5269-5274.	9.1	31
56	Dynamics of optically induced nuclear spin polarization in individual <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext>InP</mml:mtext><mml:mo>/</mml:mo>/<mml:msub><mml:mrow>< dots. Physical Review B, 2010, 81, .</mml:mrow></mml:msub></mml:mrow></mml:math>	nml:mtext	:>Ga
57	Overhauser effect in individualInPâ [•] GaxIn1â [°] xPdots. Physical Review B, 2008, 77, .	3.2	27
58	Suppression of nuclear spin diffusion at a <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext>GaAs</mml:mtext><mml:mo>/</mml:mo><mml:msub><mml:mrow> measured with a single quantum-dot nanoprobe. Physical Review B, 2009, 79, .</mml:mrow></mml:msub></mml:mrow></mml:math>	<mml:mte< td=""><td>xt³Al</td></mml:mte<>	xt³Al
59	Dielectric Nanoantennas for Strain Engineering in Atomically Thin Two-Dimensional Semiconductors. ACS Photonics, 2020, 7, 2413-2422.	6.6	26
60	Emergence of Highly Linearly Polarized Interlayer Exciton Emission in MoSe ₂ /WSe ₂ Heterobilayers with Transfer-Induced Layer Corrugation. ACS Nano, 2020, 14, 11110-11119.	14.6	26
61	Long nuclear spin polarization decay times controlled by optical pumping in individual quantum dots. Physical Review B, 2008, 77, .	3.2	25
62	Nonlinear effects in a dense two-dimensional exciton-polariton system in semiconductor microcavities. Nanotechnology, 2001, 12, 475-479.	2.6	24
63	Vanishing electrongfactor and long-lived nuclear spin polarization in weakly strained nanohole-filled GaAs/AlGaAs quantum dots. Physical Review B, 2016, 93, .	3.2	22
64	Optically tunable nuclear magnetic resonance in a single quantum dot. Physical Review B, 2010, 82, .	3.2	21
65	Nuclear magnetic resonance inverse spectra of InGaAs quantum dots: Atomistic level structural information. Physical Review B, 2014, 90, .	3.2	21
66	Large area chemical vapour deposition grown transition metal dichalcogenide monolayers automatically characterized through photoluminescence imaging. Npj 2D Materials and Applications, 2020, 4, .	7.9	20
67	Temperature-induced carrier escape processes studied in absorption of individualInxGa1â^xAsquantum dots. Physical Review B, 2004, 69, .	3.2	18
68	Measurement of local optomechanical properties of a direct bandgap 2D semiconductor. APL Materials, 2019, 7, .	5.1	18
69	Stimulated Polariton Scattering in Semiconductor Microcavities: New Physics and Potential Applications. Advanced Materials, 2001, 13, 1725-1730.	21.0	17
70	Stark spectroscopy and radiative lifetimes in single self-assembled CdTe quantum dots. Physical Review B, $2011, 83, .$	3.2	17
71	Dynamic nuclear polarization in InGaAs/GaAs and GaAs/AlGaAs quantum dots under nonresonant ultralow-power optical excitation. Physical Review B, 2013, 88, .	3.2	16
72	Few-second-long correlation times in a quantum dot nuclear spin bath probed by frequency-comb nuclear magnetic resonance spectroscopy. Nature Physics, 2016, 12, 688-693.	16.7	16

#	Article	IF	CITATIONS
73	Resonantly excited exciton dynamics in two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoSe</mml:mi><mml:mn>2<td>l:ൻւ⊅ <td>mlขดsub></td></td></mml:mn></mml:msub></mml:math>	l :ൻւ ⊅ <td>mlขดsub></td>	ml ขด sub>
74	Electrically pumped WSe2-based light-emitting van der Waals heterostructures embedded in monolithic dielectric microcavities. 2D Materials, 2020, 7, 031006.	4.4	16
75	Polariton–polariton scattering and the nonequilibrium condensation of exciton polaritons in semiconductor microcavities. Physics-Uspekhi, 2003, 46, 967-971.	2.2	15
76	Transition Metal Dichalcogenide Dimer Nanoantennas for Tailored Light–Matter Interactions. ACS Nano, 2022, 16, 6493-6505.	14.6	15
77	Laser Location and Manipulation of a Single Quantum Tunneling Channel in an InAs Quantum Dot. Physical Review Letters, 2012, 108, 117402.	7.8	14
78	Giant effective Zeeman splitting in a monolayer semiconductor realized by spin-selective strong light–matter coupling. Nature Photonics, 2022, 16, 632-636.	31.4	14
79	Nuclear spin pumping under resonant optical excitation in a quantum dot. Applied Physics Letters, 2008, 93, 073113.	3.3	13
80	Control of spontaneous emission from InP single quantum dots in GaInP photonic crystal nanocavities. Applied Physics Letters, 2010, 97, 181104.	3.3	13
81	Charge control in InP/(Ga,In)P single quantum dots embedded in Schottky diodes. Physical Review B, 2011, 84, .	3.2	13
82	Photoluminescence emission and Raman scattering polarization in birefringent organic microcavities in the strong coupling regime. Journal of Applied Physics, 2003, 93, 5003-5007.	2.5	11
83	Light-polarization-independent nuclear spin alignment in a quantum dot. Physical Review B, 2011, 83, .	3.2	11
84	Moiré or not. Nature Materials, 2020, 19, 581-582.	27.5	11
85	Strong exciton-photon coupling in large area MoSe2 and WSe2 heterostructures fabricated from two-dimensional materials grown by chemical vapor deposition. 2D Materials, 2021, 8, 011002.	4.4	10
86	Far-field emission pattern and photonic band structure in one-dimensional photonic crystals made from semiconductor microcavities. Physical Review B, 1999, 59, 10251-10254.	3.2	9
87	Threshold power and internal loss in the stimulated scattering of microcavity polaritons. Physical Review B, 2002, 66, .	3.2	9
88	Spin–valley dynamics in alloy-based transition metal dichalcogenide heterobilayers. 2D Materials, 2021, 8, 025011.	4.4	9
89	Influence of nonstimulated polariton relaxation on parametric scattering of microcavity polaritons. Physical Review B, 2004, 70, .	3.2	7
90	Precise measurement of the fraction of charged dots in self-assembled quantum dot ensembles using ultrafast pump-probe techniques. Applied Physics Letters, 2004, 85, 2226-2228.	3.3	7

#	Article	IF	Citations
91	Bistability of optically induced nuclear spin orientation in quantum dots. Physical Review B, 2007, 76, .	3.2	7
92	Holes avoid decoherence. Nature Photonics, 2011, 5, 647-649.	31.4	7
93	Low-dimensional emissive states in non-stoichiometric methylammonium lead halide perovskites. Journal of Materials Chemistry A, 2019, 7, 11104-11116.	10.3	7
94	Effect of interparticle interactions on radiative lifetime of photoexcited electron-hole system in GaAs quantum wells. Journal of Experimental and Theoretical Physics, 1997, 85, 195-199.	0.9	6
95	Exciton fine structure splitting in dot-in-a-well structures. Applied Physics Letters, 2006, 88, 131115.	3.3	6
96	Direct and spatially indirect excitons in GaAs/AlGaAs superlattices in strong magnetic fields. Journal of Experimental and Theoretical Physics, 1997, 85, 601-608.	0.9	5
97	Charging and spin-polarization effects in InAs quantum dots under bipolar carrier injection. Applied Physics Letters, 2006, 88, 111104.	3.3	5
98	Voltage-controlled nuclear polarization switching in a singleInxGa1â^'xAsquantum dot. Physical Review B, 2009, 79, .	3.2	5
99	Magnetophonon resonance in photoluminescence excitation spectra of magnetoexcitons in GaAs/AlO.3GaO.7Assuperlattice. Physical Review B, 2000, 62, 2743-2750.	3.2	4
100	Tuning of electronic coupling between self-assembled quantum dots. Applied Physics Letters, 2005, 87, 033104.	3.3	4
101	The dynamics of amplified spontaneous emission in CdSeâ [*] ZnSe quantum dots. Journal of Applied Physics, 2006, 100, 123510.	2.5	4
102	Exciton-photon interaction in low-dimensional semiconductor microcavities. Journal of Experimental and Theoretical Physics, 1998, 87, 723-730.	0.9	3
103	Bipolar charging in quantum dots array. AIP Conference Proceedings, 2007, , .	0.4	3
104	Voltage-controlled motional narrowing in a semiconductor quantum dot. New Journal of Physics, 2009, 11, 093032.	2.9	3
105	Growth of low density InP/GaInP quantum dots. Journal of Physics: Conference Series, 2010, 245, 012061.	0.4	3
106	Direct and spatially indirect excitons in GaAs/AlGaAs superlattices in strong magnetic fields. Physics of the Solid State, 1998, 40, 767-769.	0.6	2
107	Dynamics of stimulated emission in InAs quantum-dot laser structures measured in pump-probe experiments. Applied Physics Letters, 2002, 81, 4118-4120.	3.3	2
108	High pressure as a tool to tune electronic coupling in self-assembled quantum dot nanostructures. Physica Status Solidi (B): Basic Research, 2004, 241, 3257-3262.	1.5	2

#	Article	IF	CITATIONS
109	Optimization of low density InP/GalnP quantum dots for single-dot studies. Journal of Physics: Conference Series, 2010, 245, 012093.	0.4	2
110	Studies of the hole spin in self-assembled quantum dots using optical techniques. , 2012, , 63-85.		2
111	Interwell and Intrawell Magnetoexcitons in GaAs/AlGaAs Superlattices. Physica Status Solidi A, 1997, 164, 595-599.	1.7	1
112	Angle Resolved Photoluminescence Excitation Spectroscopy of Exciton–Photon Modes in a Microcavity: K-Dependence and Relaxation. Physica Status Solidi A, 1997, 164, 81-84.	1.7	1
113	Continuous wave stimulation in semiconductor microcavities in the strong coupling limit. Semiconductor Science and Technology, 2003, 18, S301-S310.	2.0	1
114	Energy relaxation of excitonlike polaritons in semiconductor microcavities: Effect on the parametric scattering of polaritons. Journal of Experimental and Theoretical Physics, 2005, 100, 126-138.	0.9	1
115	Instability effects in cw FWM of cavity polaritons in planar microcavities. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 751-754.	0.8	1
116	Single semiconductor quantum dots in nanowires: growth, optics, and devices. , 2012, , 21-40.		1
117	Holes in quantum dot molecules: structure, symmetry, and spin. , 2012, , 118-134.		1
118	Nuclear spin effects in quantum dot optics. , 0, , 237-252.		1
119	Route to indistinguishable photons. Nature Photonics, 2014, 8, 427-429.	31.4	1
120	Cross sectional STEM imaging and analysis of multilayered two dimensional crystal heterostructure devices. Microscopy and Microanalysis, 2015, 21, 107-108.	0.4	1
121	Metalorganic vapor phase epitaxy growth, transmission electron microscopy, and magneto-optical spectroscopy of individual InAsxP1â^x/Ga0.5In0.5P quantum dots. Physical Review Materials, 2017, 1, .	2.4	1
122	Exciton Spin-Splitting in InxGa1—xAs Quantum Wires and Dots. Physica Status Solidi A, 1997, 164, 409-412.	1.7	0
123	<title>Influence of temperature and free carries on four-wave mixing in semiconductor microcavities</title> ., 2002,,.		0
124	Dynamics of stimulated emission in InAs quantum dot laser structures measured in pump-probe experiments. , 2004, , .		0
125	Electronic Coupling between Self-Assembled Quantum Dots Tuned by High Pressure. AIP Conference Proceedings, 2005, , .	0.4	0
126	Size, areal density and emission energy control of InAs self assemble quantum dots grown on GaAs by selective area molecular beam epitaxy. , 2006 , , .		0

#	Article	IF	Citations
127	Control of nuclear spin in InGaAs quantum dots. , 2006, , .		0
128	Charging and spin-polarization effects in InAs quantum dots under bipolar carrier injection. , 2007, , .		0
129	Quantum Confined Stark Effect in Single Self-Assembled CdTe Quantum Dots. , 2010, , .		0
130	CdTe Quantum Dots in a Field Effect Structure: Photoluminescence Lineshape Analysis. , 2010, , .		0
131	Purcell-enhanced single-photon emission from an InP quantum dot coupled to GaInP photonic crystal nanocavity. Proceedings of SPIE, $2011, \ldots$	0.8	0
132	Electrically operated entangled light sources based on quantum dots., 0,, 319-340.		0
133	Strong exciton-photon coupling in monolayer heterostructures in tunable microcavities. , 2015, , .		0
134	Single-photon emitters in GaSe. , 2017, , .		0
135	Enhanced light-matter interaction in atomically thin semiconductors and 2D single photon emitters coupled to dielectric nano-antennas., 2021,,.		0
136	High Occupancy Effects and Condensation Phenomena in Semiconductor Microcavities and Bulk Semiconductors. Nanoscience and Technology, 2002, , 273-296.	1.5	0
137	Spin Phenomena in Self-assembled Quantum Dots. , 2008, , 165-215.		O