Amelie van der Ven

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4391286/publications.pdf

Version: 2024-02-01

162 12,976 59
papers citations h-index

166 166 13429
all docs docs citations times ranked citing authors

107

g-index

#	Article	IF	Citations
1	Ciliopathies. New England Journal of Medicine, 2011, 364, 1533-1543.	27.0	1,227
2	The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nature Genetics, 2006, 38, 674-681.	21.4	535
3	A Single-Gene Cause in 29.5% of Cases of Steroid-Resistant Nephrotic Syndrome. Journal of the American Society of Nephrology: JASN, 2015, 26, 1279-1289.	6.1	499
4	A Dynamic Protein Interaction Landscape of the Human Centrosome-Cilium Interface. Cell, 2015, 163, 1484-1499.	28.9	446
5	Patients with Mutations in NPHS2 (Podocin) Do Not Respond to Standard Steroid Treatment of Nephrotic Syndrome. Journal of the American Society of Nephrology: JASN, 2004, 15, 722-732.	6.1	370
6	Nephronophthisis-Associated Ciliopathies. Journal of the American Society of Nephrology: JASN, 2007, 18, 1855-1871.	6.1	354
7	COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. Journal of Clinical Investigation, 2011, 121, 2013-2024.	8.2	343
8	Nephronophthisis. Journal of the American Society of Nephrology: JASN, 2009, 20, 23-35.	6.1	332
9	HomozygosityMapperan interactive approach to homozygosity mapping. Nucleic Acids Research, 2009, 37, W593-W599.	14.5	331
10	Ciliopathies. Cold Spring Harbor Perspectives in Biology, 2017, 9, a028191.	5 . 5	325
11	Exploring the genetic basis of early-onset chronic kidney disease. Nature Reviews Nephrology, 2016, 12, 133-146.	9.6	276
12	Podocytopathies. Nature Reviews Disease Primers, 2020, 6, 68.	30.5	237
13	Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney International, 2014, 85, 1429-1433.	5.2	203
14	Identification of 99 novel mutations in a worldwide cohort of 1,056 patients with a nephronophthisis-related ciliopathy. Human Genetics, 2013, 132, 865-884.	3.8	199
15	Single-gene causes of congenital anomalies of the kidney and urinary tract (CAKUT) in humans. Pediatric Nephrology, 2014, 29, 695-704.	1.7	178
16	Monogenic causes of chronic kidney disease in adults. Kidney International, 2019, 95, 914-928.	5.2	174
17	Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome. Clinical Journal of the American Society of Nephrology: CJASN, 2018, 13, 53-62.	4.5	170
18	Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly. Nature Genetics, 2017, 49, 1529-1538.	21.4	164

#	Article	IF	CITATIONS
19	Fourteen Monogenic Genes Account for 15% of Nephrolithiasis/Nephrocalcinosis. Journal of the American Society of Nephrology: JASN, 2015, 26, 543-551.	6.1	163
20	Genetic testing in steroid-resistant nephrotic syndrome: when and how?. Nephrology Dialysis Transplantation, 2016, 31, 1802-1813.	0.7	159
21	Immunosuppression and Renal Outcome in Congenital and Pediatric Steroid-Resistant Nephrotic Syndrome. Clinical Journal of the American Society of Nephrology: CJASN, 2010, 5, 2075-2084.	4.5	153
22	Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome. Nature Genetics, 2016, 48, 457-465.	21.4	149
23	Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease. Nature Genetics, 2017, 49, 1025-1034.	21.4	148
24	Whole-Exome Sequencing Identifies Causative Mutations in Families with Congenital Anomalies of the Kidney and Urinary Tract. Journal of the American Society of Nephrology: JASN, 2018, 29, 2348-2361.	6.1	147
25	A Systematic Approach to Mapping Recessive Disease Genes in Individuals from Outbred Populations. PLoS Genetics, 2009, 5, e1000353.	3. 5	144
26	The copy number variation landscape of congenital anomalies of the kidney and urinary tract. Nature Genetics, 2019, 51, 117-127.	21.4	144
27	Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis andÂnephrocalcinosis. Kidney International, 2018, 93, 204-213.	5.2	133
28	Mutations in <i>FN1</i> cause glomerulopathy with fibronectin deposits. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2538-2543.	7.1	125
29	The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery. Nature Genetics, 2016, 48, 648-656.	21.4	119
30	Whole-Exome Sequencing Enables a Precision Medicine Approach for Kidney Transplant Recipients. Journal of the American Society of Nephrology: JASN, 2019, 30, 201-215.	6.1	110
31	Novel Insights into the Pathogenesis of Monogenic Congenital Anomalies of the Kidney and Urinary Tract. Journal of the American Society of Nephrology: JASN, 2018, 29, 36-50.	6.1	108
32	Whole-exome resequencing reveals recessive mutations in TRAP1 in individuals with CAKUT and VACTERL association. Kidney International, 2014, 85, 1310-1317.	5.2	106
33	Prevalence of Monogenic Causes in Pediatric Patients with Nephrolithiasis or Nephrocalcinosis. Clinical Journal of the American Society of Nephrology: CJASN, 2016, 11, 664-672.	4.5	105
34	Clinical Features and Histology of Apolipoprotein L1-Associated Nephropathy in the FSGS Clinical Trial. Journal of the American Society of Nephrology: JASN, 2015, 26, 1443-1448.	6.1	104
35	Mutations in EMP2 Cause Childhood-Onset Nephrotic Syndrome. American Journal of Human Genetics, 2014, 94, 884-890.	6.2	101
36	Genotype–phenotype correlation in 440 patients with NPHP-related ciliopathies. Kidney International, 2011, 80, 1239-1245.	5.2	99

3

#	Article	IF	CITATIONS
37	FAT1 mutations cause a glomerulotubular nephropathy. Nature Communications, 2016, 7, 10822.	12.8	99
38	DCDC2 Mutations Cause a Renal-Hepatic Ciliopathy by Disrupting Wnt Signaling. American Journal of Human Genetics, 2015, 96, 81-92.	6.2	98
39	Mild Recessive Mutations in Six Fraser Syndrome–Related Genes Cause Isolated Congenital Anomalies of the Kidney and Urinary Tract. Journal of the American Society of Nephrology: JASN, 2014, 25, 1917-1922.	6.1	97
40	Exome Sequencing Reveals Cubilin Mutation as a Single-Gene Cause of Proteinuria. Journal of the American Society of Nephrology: JASN, 2011, 22, 1815-1820.	6.1	90
41	Mutations of CEP83 Cause Infantile Nephronophthisis and Intellectual Disability. American Journal of Human Genetics, 2014, 94, 905-914.	6.2	90
42	Mutations in six nephrosis genes delineate a pathogenic pathway amenable to treatment. Nature Communications, 2018, 9, 1960.	12.8	90
43	Mutations in multiple components of the nuclear pore complex cause nephrotic syndrome. Journal of Clinical Investigation, 2018, 128, 4313-4328.	8.2	89
44	Impaired complex I repair causes recessive Leber's hereditary optic neuropathy. Journal of Clinical Investigation, 2021, 131, .	8.2	89
45	Defects of CRB2 Cause Steroid-Resistant Nephrotic Syndrome. American Journal of Human Genetics, 2015, 96, 153-161.	6.2	88
46	Genotype/Phenotype Correlation in Nephrotic Syndrome Caused by WT1 Mutations. Clinical Journal of the American Society of Nephrology: CJASN, 2010, 5, 1655-1662.	4.5	87
47	Spectrum of mutations in Chinese children with steroid-resistant nephrotic syndrome. Pediatric Nephrology, 2017, 32, 1181-1192.	1.7	81
48	A Multi-layered Quantitative InÂVivo Expression Atlas of the Podocyte Unravels Kidney Disease Candidate Genes. Cell Reports, 2018, 23, 2495-2508.	6.4	81
49	Exome Sequencing Discerns Syndromes in Patients from Consanguineous Families with Congenital Anomalies of the Kidneys and Urinary Tract. Journal of the American Society of Nephrology: JASN, 2017, 28, 69-75.	6.1	79
50	Mutation analysis in nephronophthisis using a combined approach of homozygosity mapping, CEL I endonuclease cleavage, and direct sequencing. Human Mutation, 2008, 29, 418-426.	2. 5	76
51	Mutations in CSPP1 Lead to Classical Joubert Syndrome. American Journal of Human Genetics, 2014, 94, 80-86.	6.2	75
52	Thirteen novel NPHS1 mutations in a large cohort of children with congenital nephrotic syndrome. Nephrology Dialysis Transplantation, 2008, 23, 3527-3533.	0.7	74
53	Rapid Detection of Monogenic Causes of Childhood-Onset Steroid-Resistant Nephrotic Syndrome. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 1109-1116.	4.5	74
54	Whole exome sequencing identifies causative mutations in the majority of consanguineous or familial cases with childhood-onset increased renal echogenicity. Kidney International, 2016, 89, 468-475.	5.2	74

#	Article	IF	CITATIONS
55	Nephronophthisis-Associated CEP164 Regulates Cell Cycle Progression, Apoptosis and Epithelial-to-Mesenchymal Transition. PLoS Genetics, 2014, 10, e1004594.	3.5	73
56	Mutations in TBX18 Cause Dominant Urinary Tract Malformations via Transcriptional Dysregulation of Ureter Development. American Journal of Human Genetics, 2015, 97, 291-301.	6.2	72
57	Modeling Monogenic Human Nephrotic Syndrome in the Drosophila Garland Cell Nephrocyte. Journal of the American Society of Nephrology: JASN, 2017, 28, 1521-1533.	6.1	70
58	Nineteen novel NPHS1 mutations in a worldwide cohort of patients with congenital nephrotic syndrome (CNS). Nephrology Dialysis Transplantation, 2010, 25, 2970-2976.	0.7	69
59	Whole-exome resequencing distinguishes cystic kidney diseases from phenocopies in renal ciliopathies. Kidney International, 2014, 85, 880-887.	5.2	67
60	Defects in t6A tRNA modification due to GON7 and YRDC mutations lead to Galloway-Mowat syndrome. Nature Communications, 2019, 10, 3967.	12.8	66
61	Healthcare recommendations for Joubert syndrome. American Journal of Medical Genetics, Part A, 2020, 182, 229-249.	1.2	66
62	Functional genome-wide siRNA screen identifies KIAA0586 as mutated in Joubert syndrome. ELife, 2015, 4, e06602.	6.0	64
63	Renal-Retinal Ciliopathy Gene Sdccag8 Regulates DNA Damage Response Signaling. Journal of the American Society of Nephrology: JASN, 2014, 25, 2573-2583.	6.1	63
64	Exome-wide Association Study Identifies GREB1L Mutations in Congenital Kidney Malformations. American Journal of Human Genetics, 2017, 101, 789-802.	6.2	63
65	Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of <i>WDR73</i> . Brain, 2015, 138, 2173-2190.	7.6	60
66	Personalized medicine in chronic kidney disease by detection of monogenic mutations. Nephrology Dialysis Transplantation, 2020, 35, 390-397.	0.7	58
67	Mutations in <i>WDR4</i> as a new cause of Galloway–Mowat syndrome. American Journal of Medical Genetics, Part A, 2018, 176, 2460-2465.	1.2	56
68	Paralog Studies Augment Gene Discovery: DDX and DHX Genes. American Journal of Human Genetics, 2019, 105, 302-316.	6.2	56
69	SDCCAG8 Regulates Pericentriolar Material Recruitment and Neuronal Migration in the Developing Cortex. Neuron, 2014, 83, 805-822.	8.1	52
70	Secreted metalloproteases ADAMTS9 and ADAMTS20 have a non-canonical role in ciliary vesicle growth during ciliogenesis. Nature Communications, 2019, 10, 953.	12.8	51
71	MKS1 regulates ciliary INPP5E levels in Joubert syndrome. Journal of Medical Genetics, 2016, 53, 62-72.	3.2	48
72	Rare Variants in BNC2 Are Implicated in Autosomal-Dominant Congenital Lower Urinary-Tract Obstruction. American Journal of Human Genetics, 2019, 104, 994-1006.	6.2	47

#	Article	IF	Citations
73	Targeted Resequencing of 29 Candidate Genes and Mouse Expression Studies Implicate <i>ZIC3</i> and <i>FOXF1</i> ii>in Human VATER/VACTERL Association. Human Mutation, 2015, 36, 1150-1154.	2.5	46
74	Mutations in COQ8B (ADCK4) found in patients with steroid-resistant nephrotic syndrome alter COQ8B function. Human Mutation, 2018, 39, 406-414.	2.5	43
75	<i>WDR73</i> Mutations Cause Infantile Neurodegeneration and Variable Glomerular Kidney Disease. Human Mutation, 2015, 36, 1021-1028.	2,5	42
76	GAPVD1 and ANKFY1 Mutations Implicate RAB5 Regulation in Nephrotic Syndrome. Journal of the American Society of Nephrology: JASN, 2018, 29, 2123-2138.	6.1	42
77	Whole exome sequencing identified ATP6V1C2 as a novel candidate gene for recessive distal renal tubular acidosis. Kidney International, 2020, 97, 567-579.	5.2	42
78	Exome sequencing in Jewish and Arab patients with rhabdomyolysis reveals single-gene etiology in 43% of cases. Pediatric Nephrology, 2017, 32, 2273-2282.	1.7	40
79	Multisystem inflammation and susceptibility to viral infections in human ZNFX1 deficiency. Journal of Allergy and Clinical Immunology, 2021, 148, 381-393.	2.9	40
80	Large-scale targeted sequencing comparison highlights extreme genetic heterogeneity in nephronophthisis-related ciliopathies. Journal of Medical Genetics, 2016, 53, 208-214.	3.2	39
81	Advillin acts upstream of phospholipase C $\ddot{\mu}$ 1 in steroid-resistant nephrotic syndrome. Journal of Clinical Investigation, 2017, 127, 4257-4269.	8.2	39
82	ADCK4 Deficiency Destabilizes the Coenzyme Q Complex, Which Is Rescued by 2,4-Dihydroxybenzoic Acid Treatment. Journal of the American Society of Nephrology: JASN, 2020, 31, 1191-1211.	6.1	38
83	ZMYND10 stabilizes intermediate chain proteins in the cytoplasmic pre-assembly of dynein arms. PLoS Genetics, 2018, 14, e1007316.	3.5	37
84	Treatment with 2,4-Dihydroxybenzoic Acid Prevents FSGS Progression and Renal Fibrosis in Podocyte-Specific Coq6 Knockout Mice. Journal of the American Society of Nephrology: JASN, 2019, 30, 393-405.	6.1	36
85	Whole exome sequencing in childhood-onset lupus frequently detects single gene etiologies. Pediatric Rheumatology, 2019, 17, 52.	2.1	34
86	Mutation of Growth Arrest Specific 8 Reveals a Role in Motile Cilia Function and Human Disease. PLoS Genetics, 2016, 12, e1006220.	3.5	33
87	<i>IFT81</i> , encoding an IFT-B core protein, as a very rare cause of a ciliopathy phenotype. Journal of Medical Genetics, 2015, 52, 657-665.	3.2	32
88	Clinical, biochemical, and pathophysiological analysis of <i>SLC34A1</i> mutations. Physiological Reports, 2018, 6, e13715.	1.7	32
89	Dominant PAX2 mutations may cause steroid-resistant nephrotic syndrome and FSGS in children. Pediatric Nephrology, 2019, 34, 1607-1613.	1.7	31
90	Analysis of 24 genes reveals a monogenic cause in 11.1% of cases with steroid-resistant nephrotic syndrome at a single center. Pediatric Nephrology, 2018, 33, 305-314.	1.7	30

#	Article	IF	CITATIONS
91	Mutations in MAPKBP1 Cause Juvenile or Late-Onset Cilia-Independent Nephronophthisis. American Journal of Human Genetics, 2017, 100, 323-333.	6.2	29
92	Mutations of ADAMTS9 Cause Nephronophthisis-Related Ciliopathy. American Journal of Human Genetics, 2019, 104, 45-54.	6.2	29
93	Homozygous frameshift mutations in FAT1 cause a syndrome characterized by colobomatous-microphthalmia, ptosis, nephropathy and syndactyly. Nature Communications, 2019, 10, 1180.	12.8	27
94	Gene panel sequencing identifies a likely monogenic cause in 7% of 235 Pakistani families with nephrolithiasis. Human Genetics, 2019, 138, 211-219.	3.8	26
95	TBC1D8B Mutations Implicate RAB11-Dependent Vesicular Trafficking in the Pathogenesis of Nephrotic Syndrome. Journal of the American Society of Nephrology: JASN, 2019, 30, 2338-2353.	6.1	25
96	Mutations of the Transcriptional Corepressor ZMYM2 Cause Syndromic Urinary Tract Malformations. American Journal of Human Genetics, 2020, 107, 727-742.	6.2	25
97	A FANCD2/FANCI-Associated Nuclease 1-Knockout Model Develops Karyomegalic Interstitial Nephritis. Journal of the American Society of Nephrology: JASN, 2016, 27, 3552-3559.	6.1	24
98	PLCE1 regulates the migration, proliferation, and differentiation of podocytes. Experimental and Molecular Medicine, 2020, 52, 594-603.	7.7	24
99	Mutations in KIRREL1, a slit diaphragm component, cause steroid-resistant nephrotic syndrome. Kidney International, 2019, 96, 883-889.	5.2	23
100	Whole Exome Sequencing Reveals a Monogenic Cause of Disease in â‰^43% of 35 Families With Midaortic Syndrome. Hypertension, 2018, 71, 691-699.	2.7	22
101	Human urine-derived renal epithelial cells provide insights into kidney-specific alternate splicing variants. European Journal of Human Genetics, 2018, 26, 1791-1796.	2.8	22
102	Genetic variants in the LAMA5 gene in pediatric nephrotic syndrome. Nephrology Dialysis Transplantation, 2019, 34, 485-493.	0.7	22
103	Mouse genetics reveals Barttin as a genetic modifier of Joubert syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1113-1118.	7.1	22
104	Responsiveness of sphingosine phosphate lyase insufficiency syndrome to vitamin <scp>B6</scp> cofactor supplementation. Journal of Inherited Metabolic Disease, 2020, 43, 1131-1142.	3.6	21
105	Recessive <i>NOS1AP</i> variants impair actin remodeling and cause glomerulopathy in humans and mice. Science Advances, 2021, 7, .	10.3	21
106	Osteoclast stimulation factor 1 (Ostf1) KNOCKOUT increases trabecular bone mass in mice. Mammalian Genome, 2017, 28, 498-514.	2.2	19
107	SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling. PLoS ONE, 2016, 11, e0156081.	2.5	19
108	Acute multi-sgRNA knockdown of KEOPS complex genes reproduces the microcephaly phenotype of the stable knockout zebrafish model. PLoS ONE, 2018, 13, e0191503.	2.5	18

#	Article	IF	Citations
109	CAKUT and Autonomic Dysfunction Caused by Acetylcholine Receptor Mutations. American Journal of Human Genetics, 2019, 105, 1286-1293.	6.2	18
110	Copy Number Variant Analysis and Genome-wide Association Study Identify Loci with Large Effect for Vesicoureteral Reflux. Journal of the American Society of Nephrology: JASN, 2021, 32, 805-820.	6.1	17
111	Galloway-Mowat syndrome in Taiwan: OSGEP mutation and unique clinical phenotype. Orphanet Journal of Rare Diseases, 2018, 13, 226.	2.7	16
112	Effects of Diet and Social Housing on Reproductive Success in Adult Zebrafish, <i>Danio rerio</i> Zebrafish, 2018, 15, 445-453.	1.1	16
113	Novel homozygous <i>ENPP1</i> mutation causes generalized arterial calcifications of infancy, thrombocytopenia, and cardiovascular and central nervous system syndrome. American Journal of Medical Genetics, Part A, 2019, 179, 2112-2118.	1.2	16
114	Whole-Exome Sequencing in Critically III Neonates and Infants: Diagnostic Yield and Predictability of Monogenic Diagnosis. Neonatology, 2021, 118, 454-461.	2.0	16
115	Deep learning is widely applicable to phenotyping embryonic development and disease. Development (Cambridge), 2021, 148, .	2.5	16
116	Targeted sequencing of 96 renal developmental microRNAs in 1213 individuals from 980 families with congenital anomalies of the kidney and urinary tract. Nephrology Dialysis Transplantation, 2016, 31, 1280-1283.	0.7	15
117	<i>HSPA6</i> : A new autosomal recessive candidate gene for the VATER/VACTERL malformation spectrum. Birth Defects Research, 2019, 111, 591-597.	1.5	15
118	Utility of Genomic Testing after Renal Biopsy. American Journal of Nephrology, 2020, 51, 43-53.	3.1	15
119	Mutations in PRDM15 Are a Novel Cause of Galloway-Mowat Syndrome. Journal of the American Society of Nephrology: JASN, 2021, 32, 580-596.	6.1	15
120	Inhibition of endoplasmic reticulum stress signaling rescues cytotoxicity of human apolipoprotein-L1 risk variants in Drosophila. Kidney International, 2022, 101, 1216-1231.	5.2	15
121	De novo TRIM8 variants impair its protein localization to nuclear bodies and cause developmental delay, epilepsy, and focal segmental glomerulosclerosis. American Journal of Human Genetics, 2021, 108, 357-367.	6.2	14
122	The utility of a genetic kidney disease clinic employing a broad range of genomic testing platforms: experience of the Irish Kidney Gene Project. Journal of Nephrology, 2022, 35, 1655-1665.	2.0	14
123	The nucleoside-diphosphate kinase NME3 associates with nephronophthisis proteins and is required for ciliary function during renal development. Journal of Biological Chemistry, 2018, 293, 15243-15255.	3.4	13
124	Panel sequencing distinguishes monogenic forms of nephritis from nephrosis in children. Nephrology Dialysis Transplantation, 2019, 34, 474-485.	0.7	13
125	COL4A1 mutations as a potential novel cause of autosomal dominant CAKUT in humans. Human Genetics, 2019, 138, 1105-1115.	3.8	13
126	Disruption of MAGI2-RapGEF2-Rap1 signaling contributes to podocyte dysfunction in congenital nephrotic syndrome caused by mutations in MAGI2. Kidney International, 2019, 96, 642-655.	5.2	13

#	Article	IF	CITATIONS
127	Beyond the tubule: pathological variants of $i\times LRP2, encoding the megalin receptor, result in glomerular loss and early progressive chronic kidney disease. American Journal of Physiology - Renal Physiology, 2020, 319, F988-F999.$	2.7	13
128	PRDM15 loss of function links NOTCH and WNT/PCP signaling to patterning defects in holoprosencephaly. Science Advances, 2020, 6, eaax9852.	10.3	13
129	A recurrent, homozygous EMC10 frameshift variant is associated with a syndrome of developmental delay with variable seizures and dysmorphic features. Genetics in Medicine, 2021, 23, 1158-1162.	2.4	13
130	Cystin genetic variants cause autosomal recessive polycystic kidney disease associated with altered Myc expression. Scientific Reports, 2021, 11, 18274.	3.3	13
131	Reverse phenotyping facilitates disease allele calling in exome sequencing of patients with CAKUT. Genetics in Medicine, 2022, 24, 307-318.	2.4	13
132	Genetic dissection of kidney disorders. Nature Reviews Nephrology, 2015, 11, 635-636.	9.6	12
133	Roscovitine blocks collecting duct cyst growth in Cep164-deficient kidneys. Kidney International, 2019, 96, 320-326.	5.2	12
134	DAAM2 Variants Cause Nephrotic Syndrome via Actin Dysregulation. American Journal of Human Genetics, 2020, 107, 1113-1128.	6.2	12
135	A discarded synonymous variant in <i>NPHP3</i> explains nephronophthisis and congenital hepatic fibrosis in several families. Human Mutation, 2021, 42, 1221-1228.	2.5	12
136	Cystic kidneys in fetal Walker–Warburg syndrome with <i>POMT2</i> mutation: Intrafamilial phenotypic variability in four siblings and review of literature. American Journal of Medical Genetics, Part A, 2017, 173, 2697-2702.	1.2	11
137	Progressive Pseudorheumatoid Dysplasia resolved by whole exome sequencing: a novel mutation in WISP3 and review of the literature. BMC Medical Genetics, 2019, 20, 53.	2.1	11
138	Loss of <i>Anks6 </i> leads to YAP deficiency and liver abnormalities. Human Molecular Genetics, 2020, 29, 3064-3080.	2.9	11
139	Immunological Impact of a Gluten-Free Dairy-Free Diet in Children With Kidney Disease: A Feasibility Study. Frontiers in Immunology, 2021, 12, 624821.	4.8	11
140	A small molecule screening to detect potential therapeutic targets in human podocytes. American Journal of Physiology - Renal Physiology, 2017, 312, F157-F171.	2.7	10
141	Corticosteroid treatment exacerbates nephrotic syndrome in a zebrafish model of magi2a knockout. Kidney International, 2019, 95, 1079-1090.	5.2	9
142	ANK3 related neurodevelopmental disorders: expanding the spectrum of heterozygous loss-of-function variants. Neurogenetics, 2021, 22, 263-269.	1.4	8
143	Whole-Exome Sequencing Reveals FAT4 Mutations in a Clinically Unrecognizable Patient with Syndromic CAKUT: A Case Report. Molecular Syndromology, 2017, 8, 272-277.	0.8	7
144	Recessive Mutations in SYNPO2 as a Candidate of Monogenic Nephrotic Syndrome. Kidney International Reports, 2021, 6, 472-483.	0.8	7

#	Article	IF	Citations
145	Novel nephronophthisis-associated variants reveal functional importance of MAPKBP1 dimerization for centriolar recruitment. Kidney International, 2020, 98, 958-969.	5.2	6
146	Exome survey of individuals affected by VATER / VACTERL with renal phenotypes identifies phenocopies and novel candidate genes. American Journal of Medical Genetics, Part A, 2021, 185, 3784-3792.	1.2	6
147	Whole-exome sequencing identifies <i>FOXL2</i> , <i>FOXA2</i> and <i>FOXA3</i> as candidate genes for monogenic congenital anomalies of the kidneys and urinary tract. Nephrology Dialysis Transplantation, 2022, 37, 1833-1843.	0.7	6
148	Ttc30a affects tubulin modifications in a model for ciliary chondrodysplasia with polycystic kidney disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	6
149	Proteomic analysis identifies ZMYM2 as endogenous binding partner of TBX18 protein in 293 and A549 cells. Biochemical Journal, 2022, 479, 91-109.	3.7	6
150	Expression of a Truncated Form of ODAD1 Associated with an Unusually Mild Primary Ciliary Dyskinesia Phenotype. International Journal of Molecular Sciences, 2022, 23, 1753.	4.1	6
151	Homozygous <scp><i>WNT9B</i></scp> variants in two families with bilateral renal agenesis/hypoplasia/dysplasia. American Journal of Medical Genetics, Part A, 2021, 185, 3005-3011.	1.2	5
152	Prevalence and clinical prediction of mitochondrial disorders in a large neuropediatric cohort. Clinical Genetics, 2021, 100, 766-770.	2.0	5
153	A homozygous missense variant in VWA2, encoding an interactor of the Fraser-complex, in a patient with vesicoureteral reflux. PLoS ONE, 2018, 13, e0191224.	2.5	5
154	Karyomegalic interstitial nephritis. Lancet, The, 2013, 382, 2093.	13.7	2
155	Generation of Monogenic Candidate Genes for Human Nephrotic Syndrome Using 3 Independent Approaches. Kidney International Reports, 2021, 6, 460-471.	0.8	2
156	A truncating NRIP1 variant in an Arabic family with congenital anomalies of the kidneys and urinary tract. American Journal of Medical Genetics, Part A, 2021 , , .	1.2	2
157	Whole exome sequencing identifies potential candidate genes for spina bifida derived from mouse models. American Journal of Medical Genetics, Part A, 2022, , .	1.2	2
158	Sequencing the CaSR locus in Pakistani stone formers reveals a novel loss-of-function variant atypically associated with nephrolithiasis. BMC Medical Genomics, 2021, 14, 266.	1.5	1
159	FO027DIAGNOSTIC UTILITY OF NEXT GENERATION SEQUENCING TECHNIQUES IN PATIENTS WITH FAMILIAL KIDNEY DISEASE WHO HAVE UNDERGONE PERCUTANEOUS NATIVE KIDNEY BIOPSY. Nephrology Dialysis Transplantation, 2019, 34, .	0.7	0
160	Mutations in transcription factor CP2-like 1 may cause a novel syndrome with distal renal tubulopathy in humans. Nephrology Dialysis Transplantation, 2021, 36, 237-246.	0.7	0
161	Whole exome sequencing identifies monogenic forms of nephritis in a previously unsolved cohort of children with steroid-resistant nephrotic syndrome and hematuria. Pediatric Nephrology, 2021, , 1.	1.7	0
162	A Novel form of Familial Vasopressin Deficient Diabetes Insipidus Transmitted in an X-linked Recessive manner. Journal of Clinical Endocrinology and Metabolism, 2022, , .	3.6	0