
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4390996/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Navigation, routing and geolocation through visible light communication. , 2022, , .		Ο
2	Cooperative self-localization and wayfinding services through visible light communication. , 2022, , .		0
3	Management of split intersections using vehicular visible light communication. , 2022, , .		0
4	Bidirectional visible light communication. Optical Engineering, 2020, 59, .	1.0	4
5	Positioning and advertising in large indoor environments using visible light communication. Optical Engineering, 2019, 58, 1.	1.0	1
6	Bi-directional communication between infrastructures and vehicles through visible light. , 2019, , .		12
7	Indoor positioning and intuitive advertising using visible light communication. , 2019, , .		1
8	Connected cars: road-to-vehicle communication through visible light. , 2019, , .		5
9	Bi-directional VLC LED-assisted navigation system for large indoor environments. , 2019, , .		1
10	A Simulation Study of Surface Plasmons in Metallic Nanoparticles: Dependence on the Properties of an Embedding a‧i:H Matrix. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700487.	1.8	8
11	Optical vehicular communication based on a-SiC:H technology. Science and Technology of Materials, 2018, 30, 151-156.	0.8	2
12	Cooperative vehicular communication systems based on visible light communication. Optical Engineering, 2018, 57, 1.	1.0	9
13	Light-emitting diodes aided indoor localization using visible light communication technology. Optical Engineering, 2018, 57, 1.	1.0	6
14	Double junction photodiodes for multiwavelength photoplethysmography. , 2018, , .		2
15	On the use of visible light communication in cooperative vehicular communication systems. , 2018, , .		1
16	On-off keying transmitter design for navigation by visible light communication. , 2018, , .		0
17	Visible light communication technology for fine-grained indoor localization. , 2018, , .		0
18	Design of a transmission system for indoors navigation based on VLC. , 2018, , .		0

#	Article	IF	CITATIONS
19	Vehicular Visible Light Communication: A Road-to-Vehicle Proof of Concept. , 2018, , .		Ο
20	Fine-grained indoor localization: optical sensing and detection. , 2018, , .		2
21	Indoor positioning system using a WDM device based on a-SiC:H technology. Journal of Luminescence, 2017, 191, 135-138.	3.1	16
22	Optical communication applications based on white LEDs. Journal of Luminescence, 2017, 191, 122-125.	3.1	4
23	Optical signal processing for a smart vehicle lighting system using a-SiCH technology. Proceedings of SPIE, 2017, , .	0.8	7
24	Coupled data transmission and indoor positioning by using transmitting trichromatic white LEDs and a SiC optical MUX/DEMUX mobile receiver. Proceedings of SPIE, 2017, , .	0.8	3
25	Use of VLC for indoors navigation with RGB LEDs and a-SiC:H photodetector. , 2017, , .		2
26	Luminance compensation for AMOLED displays using integrated MIS sensors. , 2017, , .		0
27	Simulation of localized surface plasmon in metallic nanoparticles embedded in amorphous silicon. , 2017, , .		2
28	Optical bias selector based on a multilayer a-SiC:H optical filter. , 2017, , .		0
29	Visible light communication and indoor positioning using a-SiCH device as receiver. , 2017, , .		Ο
30	Indoors positioning through VLC technology using an a-SiC:H photodetector. , 2017, , .		0
31	A five channels SiC MUX/DEMUX device with channel separation in the visible range. Proceedings of SPIE, 2016, , .	0.8	Ο
32	Switching characteristic and capacitance analysis of a-Si:H pinpin photodiodes for visible range telecommunications. , 2016, , .		0
33	Amorphous Silicon Photovoltaic Modules on Flexible Plastic Substrates. MRS Advances, 2016, 1, 2923-2928.	0.9	Ο
34	Added transmission capacity in VLC systems using white RGB based LEDs and WDM devices. , 2016, , .		1
35	Majority Logical Function Using a pi'npin a-SiC:H Structure1. Materials Today: Proceedings, 2016, 3, 772-779.	1.8	0
36	Optical signal processing for indoor positioning using a-SiCH technology. Optical Engineering, 2016, 55, 107105.	1.0	10

#	Article	IF	CITATIONS
37	Optical signal processing for indoor positioning using a-SiCH technology. , 2016, , .		2
38	Seven channel wavelength demultiplexer using a tandem a:SiC-H/a:Si-H photo sensor. , 2016, , .		0
39	Five channel WDM communication using a single a:SiC-H double pin photo device. Applied Surface Science, 2016, 380, 318-325.	6.1	1
40	Transmission of Signals Using White LEDs for VLC Applications1. Materials Today: Proceedings, 2016, 3, 780-787.	1.8	7
41	Light memory function in a double pin SiC device. Microelectronic Engineering, 2015, 146, 99-104.	2.4	0
42	VIS/NIR wavelength selector based on a multilayer pi'n/pin a‣iC:H optical filter. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 1387-1392.	0.8	0
43	Visible range plasmonic effect produced by aluminium nanoparticles embedded in amorphous silicon. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 1349-1354.	0.8	3
44	Optical signal processing for data error detection and correction using aâ€ s iCH technology. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 1393-1400.	0.8	19
45	Preparation and Characterization of a-SiC:H Absorber Layer for Semi-transparent Solar Cells. Energy Procedia, 2015, 84, 56-61.	1.8	2
46	Optical processor based on a-SiC technology for spectral data error control. Microelectronic Engineering, 2015, 146, 6-10.	2.4	0
47	Error control on spectral data of fourâ€wave mixing based on a‣iC technology. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 181-186.	0.8	3
48	Add/drop filters based on SiC technology for optical interconnects. IOP Conference Series: Materials Science and Engineering, 2014, 56, 012008.	0.6	0
49	Bridging the Visible Spectrum to Telecom Gap with SiC Nanophotonic Spectral Translation. Procedia Technology, 2014, 17, 310-318.	1.1	0
50	Logical functions in a tandem SiC device. Microelectronic Engineering, 2014, 126, 79-83.	2.4	4
51	SiC pinpin photonic filters for linking the visible spectrum to the telecom gap. Microelectronic Engineering, 2014, 126, 179-183.	2.4	2
52	Visible Light Communication in Traffic Links Using an a-SiC:H Multilayer Photodetector. Procedia Technology, 2014, 17, 550-556.	1.1	2
53	AND, OR, NOT Logical Functions in a SiC Tandem Device. Procedia Technology, 2014, 17, 557-565.	1.1	3
54	Increased sensitivity in a-SiC pinpin multilayers in the VIS-NIR range under UV light. Materials Research Society Symposia Proceedings, 2014, 1666, 71.	0.1	0

#	Article	IF	CITATIONS
55	Near-UV background as a bridge between visible and infrared communication. Materials Research Society Symposia Proceedings, 2014, 1666, 65.	0.1	0
56	Integrated Visible optical filter and photodetector for detection of FRET signals. Materials Research Society Symposia Proceedings, 2014, 1689, 1.	0.1	0
57	Home VLC using pinpin a-SiC:H multilayer devices. Materials Research Society Symposia Proceedings, 2014, 1693, 81.	0.1	1
58	4 Channels WDM Device for Operation in the Visible. Procedia Technology, 2014, 17, 566-573.	1.1	0
59	Tuning optical aâ€SiC/aâ€Si active filters by UV bias light in the visible and infrared spectral ranges. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1674-1677.	0.8	2
60	Viability of the use of an a‣iC:H multilayer device in a domestic VLC application. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1703-1706.	0.8	6
61	Logic functions based on optical bias controlled SiC tandem devices. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 211-216.	0.8	2
62	Viability of the use of thin-film a-SiC:H photodiodes for protein identification. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 228-233.	0.8	1
63	Simple and Complex Logical Functions in a SiC Tandem Device. IFIP Advances in Information and Communication Technology, 2014, , 592-601.	0.7	5
64	Simulation in Amorphous Silicon and Amorphous Silicon Carbide Pin Diodes. IFIP Advances in Information and Communication Technology, 2014, , 602-609.	0.7	0
65	Reconfigurable SiC Embedded Photonic Structures with Self Optical Bias Control. Plasmonics, 2013, 8, 45-51.	3.4	1
66	SiC Multilayer Structures as Light Controlled Photonic Active Filters. Plasmonics, 2013, 8, 63-70.	3.4	12
67	Optical Filter Design Using Background Wavelength Processing Techniques. Plasmonics, 2013, 8, 121-127.	3.4	0
68	Integrated photonic filters based on SiC multilayer structures. Applied Surface Science, 2013, 275, 185-192.	6.1	2
69	Capacitive effects in pinpin photodiodes. Microelectronic Engineering, 2013, 108, 195-199.	2.4	4
70	Detection of FRET signals with a wavelength sensitive device based on a-SiC:H. Applied Surface Science, 2013, 275, 49-53.	6.1	3
71	Optoelectronic logic functions using optical bias controlled SiC multilayer devices. Materials Research Society Symposia Proceedings, 2013, 1536, 91-96.	0.1	11
72	Design of an optical transmission WDM link using plastic optical fibers. Materials Research Society Symposia Proceedings, 2013, 1536, 85-90.	0.1	0

#	Article	IF	CITATIONS
73	SiC multilayer add/drop filter for optical interconnects. Materials Research Society Symposia Proceedings, 2013, 1559, 1.	0.1	1
74	SiC monolithically integrated wavelength selector with 4 channels. Materials Research Society Symposia Proceedings, 2013, 1536, 79-84.	0.1	4
75	Photodetector with integrated optical thin film filters. Journal of Physics: Conference Series, 2013, 421, 012011.	0.4	4
76	Measurement of Photo Capacitance in Amorphous Silicon Photodiodes. IFIP Advances in Information and Communication Technology, 2013, , 547-554.	0.7	1
77	Optoelectronic Logic Functions Based on Reconfigurable SiC Multilayer Devices. IFIP Advances in Information and Communication Technology, 2013, , 539-546.	0.7	0
78	Use of a-SiC:H Semiconductor-Based Transducer for Glucose Sensing through FRET Analysis. IFIP Advances in Information and Communication Technology, 2013, , 631-638.	0.7	0
79	Three Transducers Embedded into a Single SiC Photodetector: LSP Direct Image Sensor, Optical Amplifier and Demux. Journal of Nano Research, 2012, 18-19, 265-270.	0.8	3
80	Photonic active filters based on SiC multilayer structures. Materials Research Society Symposia Proceedings, 2012, 1438, 35.	0.1	0
81	Novel device for implementation of WDM in the visible spectrum. Materials Research Society Symposia Proceedings, 2012, 1438, 55.	0.1	2
82	SiC multilayer photonic structures with self optical bias amplification. Materials Research Society Symposia Proceedings, 2012, 1426, 229-235.	0.1	2
83	Characterization of a monolithic device for detection of FRET signals. Materials Research Society Symposia Proceedings, 2012, 1426, 187-192.	0.1	1
84	Light filtering devices using background wavelength processing techniques. Materials Research Society Symposia Proceedings, 2012, 1426, 175-180.	0.1	0
85	Light-Activated Amplification in Si-C Tandem Devices: A Capacitive Active Filter Model. IEEE Sensors Journal, 2012, 12, 1755-1762.	4.7	40
86	Optical nonlinearity in tandem Si-C photodetectors. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2054-2057.	0.8	0
87	DEMUX devices based on a-SiC:H. Sensors and Actuators A: Physical, 2012, 186, 143-147.	4.1	2
88	Semiconductor Device as Optical Demultiplexer for Short Range Optical Communications. Journal of Nanoscience and Nanotechnology, 2011, 11, 5318-5322.	0.9	3
89	Detection of Change in Fluorescence Between Reactive Cyan and the Yellow Fluorophores Using a-SiC:H Multilayer Transducers. Journal of Nanoscience and Nanotechnology, 2011, 11, 8657-8662.	0.9	0
90	Multilayer Architectures Based on a-SiC:H Material: Tunable Wavelength Filters in Optical Processing Devices. Journal of Nanoscience and Nanotechnology, 2011, 11, 5299-5304.	0.9	3

#	Article	IF	CITATIONS
91	Optical demultiplexer device operating in the visible spectrum. Sensors and Actuators A: Physical, 2011, 172, 35-39.	4.1	6
92	Integrated demultiplexer and photodetector for short range transmission in the visible range. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 919-923.	0.8	0
93	Photoâ€sensing devices using aâ€5i based materials. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1079-1082.	0.8	1
94	Lightâ€triggered siliconâ€carbon pi'npin devices with self amplification. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1083-1086.	0.8	0
95	Optical bias controlled amplification in tandem Si-C pinpin devices. Materials Research Society Symposia Proceedings, 2011, 1321, 417.	0.1	0
96	Use of a-SiC:H multilayer transducers for detection of fluorescence signals from reactive cyan and yellow fluorophores. Materials Research Society Symposia Proceedings, 2011, 1321, 223.	0.1	0
97	Optical Demultiplexer Device: Frequency and optical bias analysis. Materials Research Society Symposia Proceedings, 2011, 1321, 449.	0.1	1
98	Self optical gain in multilayered silicon-carbon heterostructures: A capacitive active band-pass filter model. Materials Research Society Symposia Proceedings, 2011, 1321, 441.	0.1	1
99	DEMUX SiC optical transducers for fluorescent proteins detection. Materials Research Society Symposia Proceedings, 2011, 1324, 137.	0.1	0
100	Optical Transducers Based on Amorphous Si/SiC Photodiodes. International Federation for Information Processing, 2011, , 604-611.	0.4	0
101	Direct color sensor, optical amplifier and demux device integrated on a single monolithic SiC photodetector. Procedia Engineering, 2010, 5, 232-235.	1.2	3
102	Optical demultiplexer device operating in the visible spectrum. Procedia Engineering, 2010, 5, 657-660.	1.2	0
103	Optical processing devices based on aâ€5iC:H multilayer architectures. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1184-1187.	0.8	6
104	Optical demultiplexer based on an a‣iC:H voltage controlled device. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1188-1191.	0.8	15
105	Optoelectronic properties of a-Si1-xCx:H films grown in hydrogen diluted silane-methane plasma. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, NA-NA.	0.8	0
106	Demultiplexer/Photodetector Integrated System Based on a-SiC:H Multilayered Structures. Materials Research Society Symposia Proceedings, 2010, 1245, 1.	0.1	0
107	Reviewing Photo-sensing Devices Using a-SiC Based Materials. Materials Research Society Symposia Proceedings, 2010, 1245, 1.	0.1	0
108	a-SiC:H Based Devices as Optical Demultiplexers. Materials Research Society Symposia Proceedings, 2010, 1246, 1.	0.1	0

#	Article	IF	CITATIONS
109	Optical Processing Devices Based on Multilayered a-SiC:H p-i-n Structures for Short Range Optical Communications. , 2010, , .		0
110	Monolithic a-SiC:H Stack Architectures as Tunable Optical Filters for Spectral Analysis. Materials Research Society Symposia Proceedings, 2010, 1246, 1.	0.1	0
111	Light-triggered Silicon-carbon Pi'npin Devices for Optical Communications: Theoretical and Electrical Approaches. Materials Research Society Symposia Proceedings, 2010, 1245, 1.	0.1	Ο
112	Stacked Photo-Sensing Devices Based on SiC Alloys: A Non-pixelled Architecture for Imagers and Demultiplexing Devices. , 2010, , .		0
113	Double Pin Photodiodes with Two Optical Gate Connections for Light Triggering. , 2010, , .		5
114	Monolithic a-SiC:H Architectures as Tunable Optical Filters for Spectral Analysis. , 2010, , .		0
115	Wavelength Selective a-SiC:H p-i-n/p-i-n Heterostructure for Fluorescent Proteins Detection. Sensor Letters, 2010, 8, 413-418.	0.4	0
116	Voltage Controlled Amorphous Si/SiC Phototransistors and Photodiodes as Wavelength Selective Devices: Theoretical and Electrical Approaches. Materials Research Society Symposia Proceedings, 2009, 1153, 1.	0.1	8
117	New stacked photodevices for signal multiplexing and demultiplexing applications in the visible spectrum. , 2009, , .		0
118	Modeling a-SiC:H Tandem Pinpin and Pinip Photodiodes for Color Sensor Application. Journal of Nanoscience and Nanotechnology, 2009, 9, 4028-4033.	0.9	1
119	Fine Tuning of the Spectral Sensitivity in a-SiC:H Stacked p-i'i-n Graded Cells. Materials Research Society Symposia Proceedings, 2009, 1153, 1.	0.1	0
120	Optical Processing Devices for Optical Communications: Multilayered a-SiC:H Architectures. Materials Research Society Symposia Proceedings, 2009, 1153, 1.	0.1	0
121	Large area double p–i–n heterostructure for signal multiplexing and demultiplexing in the visible range. Thin Solid Films, 2009, 517, 6435-6439.	1.8	6
122	Optical multiplexer for short range communications. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1082-1085.	2.7	15
123	Stacked pin devices for imaging applications. , 2009, , .		Ο
124	Photocurrent and Spectral Response Analysis of a-SiC:H Pinip and Pinpin Photodiodes. Journal of Nanoscience and Nanotechnology, 2009, 9, 4254-4258.	0.9	0
125	Pinpi'n and Pinpii'n Multilayer Devices with Voltage Controlled Optical Readout. Journal of Nanoscience and Nanotechnology, 2009, 9, 4022-4027.	0.9	15
126	Self-biasing effect in colour sensitive photodiodes based on double p-i-n a-SiC:H heterojunctions. Vacuum, 2008, 82, 1512-1516.	3.5	30

#	Article	IF	CITATIONS
127	Non-selective optical wavelength-division multiplexing devices based on a-SiC:H multilayer heterostuctures. Materials Research Society Symposia Proceedings, 2008, 1076, 1.	0.1	0
128	Multilayered a-SiC:H device for Wavelength-Division (de)Multiplexing applications in the visible spectrum. Materials Research Society Symposia Proceedings, 2008, 1066, 1.	0.1	4
129	Preliminary Results on Large Area X-ray a-SiC:H Multilayer Detectors with Optically Addressed Readout. Materials Research Society Symposia Proceedings, 2007, 989, 2.	0.1	1
130	Multispectral Structures for Imaging Applications. , 2007, , .		0
131	Optical Image and Color Recognition Using Monolithic Tandem Pinip and Pinpin Heterojunctions: A Comparison. , 2007, , .		0
132	Colour sensitive devices based on double p-i-n-i-p stacked photodiodes. Thin Solid Films, 2007, 515, 7526-7529.	1.8	5
133	Bias sensitive multispectral structures for imaging applications. Thin Solid Films, 2007, 515, 7566-7570.	1.8	14
134	Low leakage current a-Si:H/a-SiC:H n–i–p photodiode with Cr/a-SiNx front contact. Journal of Non-Crystalline Solids, 2006, 352, 1837-1840.	3.1	1
135	Light filtering in a-SIC:H multilayers stacked devices using the LSP technique. Journal of Non-Crystalline Solids, 2006, 352, 1809-1812.	3.1	1
136	a-SiC:H/a-Si:H tandem structure analysis for RGB color recognition in LSP devices. Journal of Non-Crystalline Solids, 2006, 352, 1805-1808.	3.1	0
137	Colour filtering in a-SiC:H based p-i-n-p-i-n cells: A trade-off between bias polarity and absorption regions. Sensors and Actuators A: Physical, 2006, 132, 218-223.	4.1	1
138	Bias sensitive spectral sensitivity in double -SiC:H pin structures. Superlattices and Microstructures, 2006, 40, 619-625.	3.1	0
139	Fine-tuning of the spectral collection efficiency in multilayer junctions. Thin Solid Films, 2006, 511-512, 84-88.	1.8	0
140	An amorphous SIC/SI image photodetector with voltage-selectable spectral response. Thin Solid Films, 2006, 511-512, 167-171.	1.8	10
141	Tuning the spectral distribution of p–i–n a-SiC:H devices for colour detection. Sensors and Actuators A: Physical, 2005, 120, 88-93.	4.1	1
142	Image and color recognition using amorphous silicon p–i–n photodiodes. Sensors and Actuators A: Physical, 2005, 123-124, 326-330.	4.1	10
143	A two terminal optical signal and image processing p–i–n/p–i–n image and colour sensor. Sensors and Actuators A: Physical, 2005, 123-124, 331-336.	4.1	4
144	Enhanced short wavelength response in laser-scanned-photodiode image sensor using an a-SiC:H/a-Si:H tandem structure. Sensors and Actuators A: Physical, 2005, 123-124, 343-348.	4.1	2

#	Article	IF	CITATIONS
145	Optical signal and image processing device optimized for optical readout. Optical Materials, 2005, 27, 1064-1068.	3.6	0
146	p–i–n flexible imaging devices with optical readout. Optical Materials, 2005, 27, 1069-1073.	3.6	3
147	Optical confinement and colour separation in a double colour laser scanned photodiode (D/CLSP). Sensors and Actuators A: Physical, 2004, 114, 219-223.	4.1	3
148	A non-pixel image reader for continuous image detection based on tandem heterostructures. Sensors and Actuators A: Physical, 2004, 115, 191-195.	4.1	0
149	a-SiC:H/a-Si:H tandem photodiods: a numerical simulation. Sensors and Actuators A: Physical, 2004, 113, 324-328.	4.1	3
150	Optoelectronic characterization of a-SIC:H stacked devices. Journal of Non-Crystalline Solids, 2004, 338-340, 345-348.	3.1	9
151	Optically addressed read–write device based on tandem heterostructure. Journal of Non-Crystalline Solids, 2004, 338-340, 754-757.	3.1	4
152	Bias controlled spectral sensitivity in a-SiC:H p–i–n devices. Thin Solid Films, 2003, 427, 196-200.	1.8	2
153	Non-pixeled amorphous silicon-based image sensors. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 16, 563-567.	2.7	3
154	Image capture devices based on p–i–n silicon carbides for biometric applications. Journal of Non-Crystalline Solids, 2002, 299-302, 1245-1249.	3.1	23
155	Memory effects in highly resistive p–i–n heterojunctions for optical applications. Thin Solid Films, 2002, 403-404, 363-367.	1.8	2
156	Modelling a-Si:H based p-i-n structures for optical sensor applications. Thin Solid Films, 2002, 403-404, 354-358.	1.8	0
157	Laser scanned photodiodes (LSPs) for image sensing. Sensors and Actuators A: Physical, 2002, 97-98, 98-103.	4.1	2
158	Bias-dependent photocurrent collection in p–i–n a-Si:H/SiC:H heterojunction. Sensors and Actuators A: Physical, 2002, 97-98, 221-226.	4.1	4
159	Analog readout image sensor based on p–i–n hydrogenated amorphous silicon. Vacuum, 2002, 64, 249-254.	3.5	0
160	Laser-scanned p-i-n photodiode (LSP) for image detection. IEEE Sensors Journal, 2001, 1, 158.	4.7	55
161	Transport mechanism in high resistive silicon carbide heterostructures. Applied Surface Science, 2001, 184, 144-149.	6.1	23
162	LSP image sensors based on SiC heterostructures. Applied Surface Science, 2001, 184, 471-476.	6.1	5

#	Article	IF	CITATIONS
163	Influence of the transducer configuration on the p-i-n image sensor resolution. Thin Solid Films, 2001, 383, 65-68.	1.8	3
164	Optimized Laser Scanned Photodiode (LSP) Imaging Transducer. Physica Status Solidi A, 2001, 185, 129-135.	1.7	1
165	On the a-Si:H film growth: the role of the powder formation. Journal of Non-Crystalline Solids, 1996, 198-200, 1207-1211.	3.1	8
166	Optical confinement and colour separation in a Double Colour Laser Scanned Photodiode (D/CLSP). , 0, , .		0