Joshua A Bittker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4390483/publications.pdf

Version: 2024-02-01

414414 361413 7,273 32 20 citations h-index papers

g-index 32 32 32 12323 docs citations times ranked citing authors all docs

32

#	Article	IF	CITATIONS
1	The Use of Informer Sets in Screening: Perspectives on an Efficient Strategy to Identify New Probes. SLAS Discovery, 2021, 26, 855-861.	2.7	8
2	Discovering the anticancer potential of non-oncology drugs by systematic viability profiling. Nature Cancer, 2020, 1, 235-248.	13.2	430
3	High Throughput Screen Identifies Interferon γ-Dependent Inhibitors of <i>Toxoplasma gondii</i> Growth. ACS Infectious Diseases, 2018, 4, 1499-1507.	3.8	11
4	Genetic and transcriptional evolution alters cancer cell line drug response. Nature, 2018, 560, 325-330.	27.8	662
5	High-Throughput Screens To Identify Autophagy Inducers That Function by Disrupting Beclin 1/Bcl-2 Binding. ACS Chemical Biology, 2018, 13, 2247-2260.	3.4	57
6	Identification of Highly Specific Diversity-Oriented Synthesis-Derived Inhibitors of <i>Clostridium difficile</i> . ACS Infectious Diseases, 2017, 3, 349-359.	3.8	15
7	The Drug Repurposing Hub: a next-generation drug library and information resource. Nature Medicine, 2017, 23, 405-408.	30.7	689
8	Small-molecule inhibitors directly target CARD9 and mimic its protective variant in inflammatory bowel disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11392-11397.	7.1	45
9	A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell, 2017, 171, 1437-1452.e17.	28.9	2,281
10	Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature, 2016, 538, 344-349.	27.8	214
11	Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nature Chemical Biology, 2016, 12, 109-116.	8.0	636
12	Advancing Biological Understanding and Therapeutics Discovery with Small-Molecule Probes. Cell, 2015, 161, 1252-1265.	28.9	135
13	Target-Based Identification of Whole-Cell Active Inhibitors of Biotin Biosynthesis in Mycobacterium tuberculosis. Chemistry and Biology, 2015, 22, 76-86.	6.0	42
14	Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset. Cancer Discovery, 2015, 5, 1210-1223.	9.4	575
15	An Overview of the Challenges in Designing, Integrating, and Delivering BARD: A Public Chemical-Biology Resource and Query Portal for Multiple Organizations, Locations, and Disciplines. Journal of Biomolecular Screening, 2014, 19, 614-627.	2.6	22
16	Toward performance-diverse small-molecule libraries for cell-based phenotypic screening using multiplexed high-dimensional profiling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10911-10916.	7.1	191
17	An Interactive Resource to Identify Cancer Genetic and Lineage Dependencies Targeted by Small Molecules. Cell, 2013, 154, 1151-1161.	28.9	615
18	Niche-based screening identifies small-molecule inhibitors of leukemia stem cells. Nature Chemical Biology, 2013, 9, 840-848.	8.0	103

#	Article	IF	CITATIONS
19	ML212: A small-molecule probe for investigating fluconazole resistance mechanisms in <i>Candida albicans</i> . Beilstein Journal of Organic Chemistry, 2013, 9, 1501-1507.	2.2	14
20	Automatically Detecting Workflows in PubChem. Journal of Biomolecular Screening, 2012, 17, 1071-1079.	2.6	9
21	Utility-Aware Screening with Clique-Oriented Prioritization. Journal of Chemical Information and Modeling, 2012, 52, 29-37.	5.4	7
22	Development of small-molecule probes that selectively kill cells induced to express mutant RAS. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1822-1826.	2.2	157
23	Overcoming fluconazole resistance in Candida albicans clinical isolates with tetracyclic indoles. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3362-3365.	2.2	21
24	Highâ€Throughput RTâ€PCR for Smallâ€Molecule Screening Assays. Current Protocols in Chemical Biology, 2012, 4, 49-63.	1.7	15
25	Piperazinyl quinolines as chemosensitizers to increase fluconazole susceptibility of Candida albicans clinical isolates. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5502-5505.	2.2	15
26	Identification of small-molecule inhibitors of Trypansoma cruzi replication. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 7197-7200.	2.2	12
27	An Economic Framework to Prioritize Confirmatory Tests after a High-Throughput Screen. Journal of Biomolecular Screening, 2010, 15, 680-686.	2.6	14
28	Small-molecule inducers of insulin expression in pancreatic \hat{l}_{\pm} -cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15099-15104.	7.1	62
29	Functional Dissection of sRNA Translational Regulators by Nonhomologous Random Recombination and In Vivo Selection. Chemistry and Biology, 2005, 12, 757-767.	6.0	9
30	Directed evolution of protein enzymes using nonhomologous random recombination. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7011-7016.	7.1	65
31	Recent advances in the in vitro evolution of nucleic acids. Current Opinion in Chemical Biology, 2002, 6, 367-374.	6.1	62
32	Nucleic acid evolution and minimization by nonhomologous random recombination. Nature Biotechnology, 2002, 20, 1024-1029.	17.5	80