Qinghua' Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4388870/publications.pdf

Version: 2024-02-01

192 papers

12,638 citations

44069 48 h-index 27406 106 g-index

202 all docs 202 docs citations

times ranked

202

10896 citing authors

#	Article	IF	CITATIONS
1	Deep eutectic solvents: syntheses, properties and applications. Chemical Society Reviews, 2012, 41, 7108.	38.1	3,591
2	Recent advances in ionic liquid catalysis. Green Chemistry, 2011, 13, 2619.	9.0	619
3	Energetic Ionic Liquids as Explosives and Propellant Fuels: A New Journey of Ionic Liquid Chemistry. Chemical Reviews, 2014, 114, 10527-10574.	47.7	495
4	Energetic Salts with π-Stacking and Hydrogen-Bonding Interactions Lead the Way to Future Energetic Materials. Journal of the American Chemical Society, 2015, 137, 1697-1704.	13.7	360
5	Dancing with Energetic Nitrogen Atoms: Versatile N-Functionalization Strategies for <i>N</i> +Heterocyclic Frameworks in High Energy Density Materials. Accounts of Chemical Research, 2016, 49, 4-16.	15.6	266
6	Fused heterocycle-based energetic materials (2012–2019). Journal of Materials Chemistry A, 2020, 8, 4193-4216.	10.3	263
7	Accelerating the discovery of insensitive high-energy-density materials by a materials genome approach. Nature Communications, 2018, 9, 2444.	12.8	245
8	From CO Oxidation to CO2Activation:Â An Unexpected Catalytic Activity of Polymer-Supported Nanogold. Journal of the American Chemical Society, 2005, 127, 4182-4183.	13.7	227
9	A promising high-energy-density material. Nature Communications, 2017, 8, 181.	12.8	218
10	Silica-Gel-Confined Ionic Liquids: A New Attempt for the Development of Supported Nanoliquid Catalysis. Chemistry - A European Journal, 2005, 11, 5279-5288.	3.3	209
11	Metal–Organic Frameworks as High Explosives: A New Concept for Energetic Materials. Angewandte Chemie - International Edition, 2014, 53, 2540-2542.	13.8	208
12	A green metal-free fused-ring initiating substance. Nature Communications, 2019, 10, 1339.	12.8	144
13	Physicochemical Properties of Nitrile-Functionalized Ionic Liquids. Journal of Physical Chemistry B, 2007, 111, 2864-2872.	2.6	137
14	Solubilities of the Gaseous and Liquid Solutes and Their Thermodynamics of Solubilization in the Novel Room-Temperature Ionic Liquids at Infinite Dilution by Gas Chromatography. Journal of Chemical & Diparting Data, 2007, 52, 2277-2283.	1.9	133
15	Beyond solvents and electrolytes: Ionic liquids-based advanced functional materials. Progress in Materials Science, 2016, 77, 80-124.	32.8	129
16	Deep eutectic solvents as novel extraction media for phenolic compounds from model oil. Chemical Communications, 2014, 50, 11749-11752.	4.1	121
17	Green and Inexpensive Cholineâ€Derived Solvents for Cellulose Decrystallization. Chemistry - A European Journal, 2012, 18, 1043-1046.	3.3	110
18	lonic Liquid as an Efficient Promoting Medium for Fixation of Carbon Dioxide:Â A Clean Method for the Synthesis of 5-Methylene-1,3-oxazolidin-2-ones from Propargylic Alcohols, Amines, and Carbon Dioxide Catalyzed by Cu(I) under Mild Conditions. Journal of Organic Chemistry, 2005, 70, 7376-7380.	3.2	106

#	Article	IF	Citations
19	Biodegradation and detoxification of Direct Black G textile dye by a newly isolated thermophilic microflora. Bioresource Technology, 2018, 250, 650-657.	9.6	104
20	Stabilization of the Pentazolate Anion in a Zeolitic Architecture with Na ₂₀ N ₆₀ and Na ₂₄ N ₆₀ Nanocages. Angewandte Chemie - International Edition, 2018, 57, 2592-2595.	13.8	100
21	Shape-controlled nanostructured magnetite-type materials as highly efficient Fenton catalysts. Applied Catalysis B: Environmental, 2014, 144, 739-749.	20.2	95
22	Ionic Liquid Propellants: Future Fuels for Space Propulsion. Chemistry - A European Journal, 2013, 19, 15446-15451.	3.3	94
23	Pretreatment of microcrystalline cellulose by ultrasounds: effect of particle size in the heterogeneously-catalyzed hydrolysis of cellulose to glucose. Green Chemistry, 2013, 15, 963.	9.0	88
24	Cyanoborohydrideâ€Based Ionic Liquids as Green Aerospace Bipropellant Fuels. Chemistry - A European Journal, 2014, 20, 6909-6914.	3.3	88
25	Depolymerization of Cellulose Assisted by a Nonthermal Atmospheric Plasma. Angewandte Chemie - International Edition, 2011, 50, 8964-8967.	13.8	85
26	N-Trinitroethylamino functionalization of nitroimidazoles: a new strategy for high performance energetic materials. Journal of Materials Chemistry A, 2013, $1,7500$.	10.3	82
27	Effect of organic loading rate on anaerobic co-digestion of rice straw and pig manure with or without biological pretreatment. Bioresource Technology, 2018, 250, 155-162.	9.6	82
28	A luminescent heterometallic metal–organic framework for the naked-eye discrimination of nitroaromatic explosives. Chemical Communications, 2017, 53, 10318-10321.	4.1	78
29	Novel Cyclic Sulfoniumâ€Based Ionic Liquids: Synthesis, Characterization, and Physicochemical Properties. Chemistry - A European Journal, 2009, 15, 765-778.	3.3	7 5
30	5,6-Fused bicyclic tetrazolo-pyridazine energetic materials. Chemical Communications, 2020, 56, 1493-1496.	4.1	75
31	Nanocomposites of ionic liquids confined in mesoporous silica gels: preparation, characterization and performance. Physical Chemistry Chemical Physics, 2010, 12, 1971.	2.8	7 3
32	Growing Catenated Nitrogen Atom Chains. Angewandte Chemie - International Edition, 2013, 52, 8792-8794.	13.8	72
33	Energetic <i>N</i> â€Trinitroethylâ€Substituted Monoâ€, Diâ€, and Triaminotetrazoles. Chemistry - A European Journal, 2013, 19, 11000-11006.	3.3	72
34	Mechanocatalytic Deconstruction of Cellulose: An Emerging Entry into Biorefinery. ChemSusChem, 2013, 6, 2042-2044.	6.8	71
35	Hunting for advanced high-energy-density materials with well-balanced energy and safety through an energetic host–guest inclusion strategy. Journal of Materials Chemistry A, 2019, 7, 19248-19257.	10.3	69
36	Activation of Microcrystalline Cellulose in a CO ₂ â€Based Switchable System. ChemSusChem, 2013, 6, 593-596.	6.8	67

#	Article	IF	CITATIONS
37	Exploiting hydrophobic borohydride-rich ionic liquids as faster-igniting rocket fuels. Chemical Communications, 2016, 52, 2031-2034.	4.1	66
38	Investigation of cation–anion interaction in 1â€(2â€hydroxyethyl)â€3â€methylimidazoliumâ€based ion pairs by density functional theory calculations and experiments. Journal of Physical Organic Chemistry, 2012, 25, 248-257.	1.9	64
39	Bis(4â€nitraminofurazanylâ€3â€azoxy)azofurazan and Derivatives: 1,2,5â€Oxadiazole Structures and Highâ€Performance Energetic Materials. Angewandte Chemie - International Edition, 2016, 55, 11548-11551.	13.8	62
40	Efficient and eco-friendly process for the synthesis of N-substituted 4-methylene-2-oxazolidinones in ionic liquids. Tetrahedron Letters, 2005, 46, 5907-5911.	1.4	61
41	Synthesis of Thermally Stable and Insensitive Energetic Materials by Incorporating the Tetrazole Functionality into a Fused-Ring 3,6-Dinitropyrazolo-[4,3- <i>c</i>) Pyrazole Framework. ACS Applied Materials & Diterfaces, 2019, 11, 45914-45921.	8.0	58
42	The Influence of the Acidity of Ionic Liquids on Catalysis. ChemSusChem, 2010, 3, 1043-1047.	6.8	56
43	Solvent-dependent photoresponsive conductivity of azobenzene-appended ionic liquids. Chemical Communications, 2011, 47, 6641.	4.1	56
44	Selective detection of picric acid by a fluorescent ionic liquid chemosensor. Sensors and Actuators B: Chemical, 2016, 229, 520-527.	7.8	56
45	Synthesis of carbamates from aliphatic amines and dimethyl carbonate catalyzed by acid functional ionic liquids. Journal of Molecular Catalysis A, 2007, 271, 89-92.	4.8	54
46	Development of Ionic Liquids as Green Reaction Media and Catalysts. Catalysis Surveys From Asia, 2004, 8, 179-186.	2.6	53
47	Construction of a Thermally Stable and Highly Energetic Metal–Organic Framework as Lead-Free Primary Explosives. Crystal Growth and Design, 2018, 18, 1896-1902.	3.0	53
48	Synthesis of 1-(2H-tetrazol-5-yl)-5-nitraminotetrazole and its derivatives from 5-aminotetrazole and cyanogen azide: a promising strategy towards the development of $Cae^{\circ}N$ linked bistetrazolate energetic materials. Journal of Materials Chemistry A, 2017, 5, 20867-20873.	10.3	52
49	High density assembly of energetic molecules under the constraint of defected 2D materials. Journal of Materials Chemistry A, 2019, 7, 17806-17814.	10.3	51
50	Dialkoxy functionalized quaternary ammonium ionic liquids as potential electrolytes and cellulose solvents. New Journal of Chemistry, 2011, 35, 1596.	2.8	50
51	Construction of an Unusual Two-Dimensional Layered Structure for Fused-Ring Energetic Materials with High Energy and Good Stability. Engineering, 2020, 6, 1006-1012.	6.7	50
52	Melamine N-oxide based self-assembled energetic materials with balanced energy & Ensitivity and enhanced combustion behavior. Chemical Engineering Journal, 2020, 395, 125114.	12.7	48
53	Bis(borano)hypophosphite-based ionic liquids as ultrafast-igniting hypergolic fuels. Journal of Materials Chemistry A, 2016, 4, 8978-8982.	10.3	46
54	Greatly enhanced fluorescence of dicyanamide anion based ionic liquids confined into mesoporous silica gel. Chemical Physics Letters, 2008, 461, 229-234.	2.6	44

#	Article	IF	Citations
55	lodocuprate-containing ionic liquids as promoters for green propulsion. Journal of Materials Chemistry A, 2018, 6, 22819-22829.	10.3	44
56	Photochromism of Spiropyran in Ionic Liquids: Enhanced Fluorescence and Delayed Thermal Reversion. Journal of Physical Chemistry B, 2009, 113, 6012-6019.	2.6	42
57	[1,2,4]Triazolo[4,3-b]pyridazine as a building block towards low-sensitivity high-energy materials. Chemical Engineering Journal, 2021, 421, 129635.	12.7	42
58	A promising hydrogen peroxide adduct of ammonium cyclopentazolate as a green propellant component. Journal of Materials Chemistry A, 2020, 8, 12334-12338.	10.3	41
59	Detoxification of azo dye Direct Black G by thermophilic Anoxybacillus sp. PDR2 and its application potential in bioremediation. Ecotoxicology and Environmental Safety, 2021, 214, 112084.	6.0	41
60	Novel Ionic Liquid Crystals Based on N-Alkylcaprolactam as Cations. Chemistry of Materials, 2007, 19, 2544-2550.	6.7	40
61	Ionic liquid based variable focus lenses. Soft Matter, 2011, 7, 5941.	2.7	40
62	Biodegradable betaine-based aprotic task-specific ionic liquids and their application in efficient SO ₂ absorption. Green Chemistry, 2015, 17, 3798-3805.	9.0	40
63	Silica Gel Confined Ionic Liquid+Metal Complexes for Oxygen-Free Carbonylation of Amines and Nitrobenzene to Ureas. Advanced Synthesis and Catalysis, 2005, 347, 225-230.	4.3	39
64	Insensitive Nitrogenâ€Rich Materials Incorporating the Nitroguanidyl Functionality. Chemistry - an Asian Journal, 2014, 9, 212-217.	3.3	39
65	Towards Safer Rocket Fuels: Hypergolic Imidazolylideneâ€Borane Compounds as Replacements for Hydrazine Derivatives. Chemistry - A European Journal, 2016, 22, 10187-10193.	3.3	39
66	Exploring Sustainable Rocket Fuels: [Imidazolylâ^'Amineâ^'BH ₂] ⁺ ationâ€Based Ionic Liquids as Replacements for Toxic Hydrazine Derivatives. Chemistry - an Asian Journal, 2015, 10, 2725-2732.	3.3	38
67	Self-Assembly of Nitrogen-Rich Heterocyclic Compounds with Oxidants for the Development of High-Energy Materials. ACS Applied Materials & Samp; Interfaces, 2021, 13, 28390-28397.	8.0	38
68	Effect of bioaugmentation on lignocellulose degradation and antibiotic resistance genes removal during biogas residues composting. Bioresource Technology, 2021, 340, 125742.	9.6	38
69	The ignition process measurements and performance evaluations for hypergolic ionic liquid fuels: [EMIm][DCA] and [BMIm][DCA]. Fuel, 2018, 215, 612-618.	6.4	37
70	Accelerating the discovery of energetic melt-castable materials by a high-throughput virtual screening and experimental approach. Journal of Materials Chemistry A, 2021, 9, 21723-21731.	10.3	37
71	Exploiting the energetic potential of 1,2,4-oxadiazole derivatives: combining the benefits of a 1,2,4-oxadiazole framework with various energetic functionalities. Dalton Transactions, 2017, 46, 14210-14218.	3.3	35
72	Combination of <i>gem</i> -dinitromethyl functionality and a 5-amino-1,3,4-oxadiazole framework for zwitterionic energetic materials. Chemical Communications, 2020, 56, 209-212.	4.1	35

#	Article	IF	CITATIONS
73	Super-base-derived hypergolic ionic fuels with remarkably improved thermal stability. Journal of Materials Chemistry A, 2015, 3, 20664-20672.	10.3	34
74	Coulomb explosion and ultra-fast hypergolic ignition of borohydride-rich ionic liquids with WFNA. Combustion and Flame, 2018, 194, 464-471.	5.2	34
75	Genome and transcriptome analysis of a newly isolated azo dye degrading thermophilic strain Anoxybacillus sp Ecotoxicology and Environmental Safety, 2020, 203, 111047.	6.0	34
76	Green primary energetic materials based on N-(3-nitro-1-(trinitromethyl)-1H-1,2,4-triazol-5-yl)nitramide. New Journal of Chemistry, 2017, 41, 9070-9076.	2.8	33
77	Fluorescent quinolizinium ionic liquids (salts) with unexpectedly high quantum yields up to >99%. Journal of Materials Chemistry, 2011, 21, 8979.	6.7	32
78	Supramolecular Templating Approach for the Solvent-Free Synthesis of Open-Framework Metal Oxalates. Inorganic Chemistry, 2016, 55, 7817-7819.	4.0	32
79	A simple and versatile strategy for taming FOX-7. Chemical Communications, 2018, 54, 9333-9336.	4.1	32
80	Revisiting the reactive chemistry of FOX-7: cyclization of FOX-7 affords the fused-ring polynitro compounds. Chemical Communications, 2019, 55, 3497-3500.	4.1	31
81	Interfacial engineering endowing energetic co-particles with high density and reduced sensitivity. Chemical Engineering Journal, 2020, 387, 124209.	12.7	31
82	lonic liquid-modified dyes and their sensing performance toward acids in aqueous and non-aqueous solutions. Analyst, The, 2011, 136, 1302.	3.5	30
83	Insight into the Characteristics and New Mechanism of Nicosulfuron Biodegradation by a <i>Pseudomonas</i> sp. LAM1902. Journal of Agricultural and Food Chemistry, 2020, 68, 826-837.	5.2	30
84	Developing effective catalyst system for reductive carbonylation of nitrobenzene based on the diversity of ionic liquids. Journal of Molecular Catalysis A, 2006, 244, 64-67.	4.8	29
85	Molecular Design and Property Prediction of High Density Polynitro[3.3.3]-Propellane-Derivatized Frameworks as Potential High Explosives. Journal of Physical Chemistry A, 2014, 118, 10857-10865.	2.5	29
86	Synthesis of <i>gem</i> â€Dinitromethylated and Fluorodinitromethylated Derivatives of 5,5′â€Dinitroâ€bisâ€1,2,4â€triazole as Promising Highâ€Energyâ€Density Materials. Chemistry - A European Jo 2017, 23, 12787-12794.	യന്മി,	29
87	Synthesis of 4,8â€Dinitraminodifurazano[3, 4â€∢i>b,e]pyrazine Derived Nitrogenâ€Rich Salts as Potentia Energetic Materials. ChemistrySelect, 2018, 3, 849-854.	1.5	29
88	[LiNa(N5)2(H2O)4]·H2O: a novel heterometallic cyclo- $\$m\{N\}_5^-$ \$ N 5 â^ framework with helical chains. Science China Materials, 2019, 62, 283-288.	6.3	29
89	Synthesis of dialkyl hexamethylenedicarbamate from 1,6-hexamethylenediamine and alkyl carbamate over Y(NO3)3Â-6H2O catalyst. Journal of Molecular Catalysis A, 2008, 296, 36-41.	4.8	28
90	Energetic Metal–Organic Frameworks Incorporating NH ₃ OH ⁺ for New High-Energy-Density Materials. Inorganic Chemistry, 2019, 58, 12228-12233.	4.0	28

#	Article	IF	Citations
91	A facile strategy for synthesizing promising pyrazole-fused energetic compounds. Chemical Engineering Journal, 2021, 416, 129190.	12.7	28
92	Nitratoâ€Functionalized Taskâ€Specific Ionic Liquids as Attractive Hypergolic Rocket Fuels. Chemistry - A European Journal, 2017, 23, 12502-12509.	3.3	27
93	Construction of Bicyclic 1,2,3-Triazine <i>N</i> -Oxides from Aminocyanides. Organic Letters, 2021, 23, 734-738.	4.6	27
94	Exploration of new water stable proton-conducting materials in an amino acid-templated metal phosphate system. Dalton Transactions, 2018, 47, 654-658.	3.3	26
95	Decoding the crystal engineering of graphite-like energetic materials: from theoretical prediction to experimental verification. Journal of Materials Chemistry A, 2020, 8, 5975-5985.	10.3	26
96	From the sensitive primary explosive ICM-103 to insensitive heat-resistant energetic materials through a local azide-to-amino structural modification strategy. Chemical Engineering Journal, 2022, 429, 132172.	12.7	26
97	Co(acac)3/BMMImCl as a base-free catalyst system for clean syntheses of N,N′-disubstituted ureas from amines and CO2. Science China Chemistry, 2010, 53, 1534-1540.	8.2	25
98	Ionothermal Synthesis of Open-Framework Metal Phosphates Using a Multifunctional Ionic Liquid. Inorganic Chemistry, 2018, 57, 8726-8729.	4.0	25
99	Regulating safety and energy release of energetic materials by manipulation of molybdenum disulfide phase. Chemical Engineering Journal, 2021, 411, 128603.	12.7	25
100	Longâ€chain alkylimidazolium ionic liquids, a new class of cationic surfactants coated on ODS columns for anionâ€exchange chromatography. Journal of Separation Science, 2008, 31, 2791-2796.	2.5	24
101	Synthesis of fused tetrazolo[1,5-b]pyridazine-based energetic compounds. Energetic Materials Frontiers, 2020, 1, 16-25.	3.2	24
102	Integrated metagenomic and metaproteomic analyses reveal potential degradation mechanism of azo dye-Direct Black G by thermophilic microflora. Ecotoxicology and Environmental Safety, 2020, 196, 110557.	6.0	22
103	Energetic isomers of bridged oxadiazole nitramines: the effect of asymmetric heterocyclics on stability and energetic properties. Dalton Transactions, 2021, 50, 13286-13293.	3.3	22
104	Towards <i>N</i> â€Alkylimidazole Boraneâ€based Hypergolic Fuels. Chemistry - an Asian Journal, 2016, 11, 3528-3533.	3.3	21
105	Bis(4â€nitraminofurazanylâ€3â€azoxy)azofurazan and Derivatives: 1,2,5â€Oxadiazole Structures and Highâ€Performance Energetic Materials. Angewandte Chemie, 2016, 128, 11720-11723.	2.0	21
106	Heterometallic Hybrid Open Frameworks: Synthesis and Application for Selective Detection of Nitro Explosives. Crystal Growth and Design, 2017, 17, 1836-1842.	3.0	21
107	Rational Design and Facile Synthesis of Boranophosphate Ionic Liquids as Hypergolic Rocket Fuels. Chemistry - A European Journal, 2018, 24, 10201-10207.	3.3	21
108	"Tandem-action―ferrocenyl iodocuprates promoting low temperature hypergolic ignitions of "green― ElL–H ₂ O ₂ bipropellants. Journal of Materials Chemistry A, 2020, 8, 14661-14670.	10.3	21

#	Article	IF	CITATIONS
109	Enhanced and Reversible Contact Angle Modulation of Ionic Liquids in Oil and under AC Electric Field. ChemPhysChem, 2010, 11, 2327-2331.	2.1	20
110	Enhancement of butanol production in Clostridium acetobutylicum SE25 through accelerating phase shift by different phases pH regulation from cassava flour. Bioresource Technology, 2016, 201, 148-155.	9.6	20
111	Synthesis and Properties of Triaminocyclopropenium Cation Based Ionic Liquids as Hypergolic Fluids. Chemistry - A European Journal, 2018, 24, 4620-4627.	3.3	20
112	Fabrication of UV-curable silicone coating with high transmittance and laser-induced damage threshold for high-power laser system. Journal of Sol-Gel Science and Technology, 2018, 88, 249-254.	2.4	20
113	Evaluation of bioremediation and detoxification potentiality for papermaking black liquor by a new isolated thermophilic and alkali-tolerant Serratia sp. AXJ-M. Journal of Hazardous Materials, 2021, 406, 124285.	12.4	20
114	Ionic liquidized-naphthalenesulfonamide: successful fabrication of liquid fluorescent materials. Journal of Materials Chemistry, 2011, 21, 16335.	6.7	19
115	Fluorescent heterometallic MOFs: tunable framework charges and application for explosives detection. CrystEngComm, 2016, 18, 8301-8308.	2.6	19
116	Enhanced butanol production by solvent tolerance Clostridium acetobutylicum SE25 from cassava flour in a fibrous bed bioreactor. Bioresource Technology, 2016, 221, 412-418.	9.6	19
117	Novel thermo-alkali-stable cellulase-producing Serratia sp. AXJ-M cooperates with Arthrobacter sp. AXJ-M1 to improve degradation of cellulose in papermaking black liquor. Journal of Hazardous Materials, 2022, 421, 126811.	12.4	19
118	Synthesis of Ideal Energetic Materials with High Density and Performance Based on 5-Aminotetrazole. Crystal Growth and Design, 2022, 22, 2594-2601.	3.0	19
119	Stabilization of the Pentazolate Anion in a Zeolitic Architecture with Na ₂₀ N ₆₀ Nanocages. Angewandte Chemie, 2018, 130, 2622-2625.	2.0	18
120	Designing Explosive Poly(Ionic Liquid)s as Novel Energetic Polymers. Chemistry - A European Journal, 2018, 24, 15897-15902.	3.3	18
121	Exploration of the key functional strains from an azo dye degradation microbial community by DGGE and high-throughput sequencing technology. Environmental Science and Pollution Research, 2019, 26, 24658-24671.	5.3	18
122	Fabrication of protonated g-C ₃ N ₄ nanosheets as promising proton conductive materials. Chemical Communications, 2019, 55, 7414-7417.	4.1	18
123	Synthesis and hypergolic properties of flammable ionic liquids based on the cyano (1 <i>H</i> -1,2,3-triazole-1-yl) dihydroborate anion. Dalton Transactions, 2019, 48, 6198-6204.	3.3	18
124	Machine Learning-Assisted High-Throughput Virtual Screening for On-Demand Customization of Advanced Energetic Materials. Engineering, 2022, 10, 99-109.	6.7	18
125	Hydrophobic 1-allyl-3-alkylimidazolium dicyanamide ionic liquids with low densities. Journal of Materials Chemistry, 2011, 21, 6864.	6.7	17
126	Microporous Metal-Organic Frameworks Based on Zinc Clusters and Their Fluorescence Enhancements towards Acetone and Chloroform. European Journal of Inorganic Chemistry, 2016, 2016, 3411-3416.	2.0	17

#	Article	IF	Citations
127	Synthesis and Properties of 3,6â€Dinitropyrazolo[4,3]â€pyrazole (DNPP) Derivatives. Propellants, Explosives, Pyrotechnics, 2020, 45, 546-553.	1.6	17
128	Synthesis of nitrogen-rich and thermostable energetic materials based on hetarenecarboxylic acids. Dalton Transactions, 2021, 50, 14462-14468.	3.3	17
129	Anaerobic Co-digestion of Rice Straw and Pig Manure Pretreated With a Cellulolytic Microflora: Methane Yield Evaluation and Kinetics Analysis. Frontiers in Bioengineering and Biotechnology, 2020, 8, 579405.	4.1	17
130	Exploration of the key microbes involved in the cellulolytic activity of a microbial consortium by serial dilution. Bioresource Technology, 2013, 132, 395-400.	9.6	16
131	Synthesis of efficient SBA-15 immobilized ionic liquid catalyst and its performance for Friedel–Crafts reaction. Catalysis Today, 2016, 276, 112-120.	4.4	16
132	A sustainable system for maleic acid synthesis from biomassâ€derived sugar. Journal of Chemical Technology and Biotechnology, 2020, 95, 751-757.	3.2	16
133	The Roles of Endoplasmic Reticulum Overload Response Induced by HCV and NS4B Protein in Human Hepatocyte Viability and Virus Replication. PLoS ONE, 2015, 10, e0123190.	2.5	16
134	Organic superbase derived ionic liquids based on the TFSI anion: synthesis, characterization, and electrochemical properties. New Journal of Chemistry, 2017, 41, 5091-5097.	2.8	14
135	Cellulolytic bacterium characterization and genome functional analysis: An attempt to lay the foundation for waste management. Bioresource Technology, 2021, 321, 124462.	9.6	14
136	A heat-resistant and insensitive energetic material based on the pyrazolo-triazine framework. Energetic Materials Frontiers, 2022, 3, 26-31.	3.2	14
137	Isolation of new flavan-3-ol and lignan glucoside from Loropetalum chinense and their antimicrobial activities. Fìtoterapìâ, 2013, 90, 228-232.	2.2	13
138	lonic Liquidâ€Mediated αâ€Fe ₂ O ₃ Shapeâ€Controlled Nanocrystalâ€Supported Noble Metals: Highly Active Materials for CO Oxidation. ChemCatChem, 2013, 5, 1978-1988.	3.7	13
139	Construction of hydrothermally stable beryllium phosphite open-frameworks with high proton conductivity. CrystEngComm, 2017, 19, 3997-4002.	2.6	13
140	Experimental Observation of Hypergolic Ignition of Superbase-Derived Ionic Liquids. Journal of Propulsion and Power, 2018, 34, 125-132.	2.2	13
141	Photobacterium salinisoli sp. nov., isolated from a sulfonylurea herbicide-degrading consortium enriched with saline soil. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 3910-3916.	1.7	13
142	Simple reaction to prepare a heat-resistant and insensitive explosive (2-nitro-[1,2,4]triazolo[1,5-a][1,3,5]triazine-5,7-diamine) and its derivatives. Chemical Engineering Journal, 2022, 432, 134297.	12.7	13
143	Effects of alkyl chains on the physicochemical properties of nitroguanidine derivatives. Energetic Materials Frontiers, 2020, 1, 157-164.	3.2	12
144	Effects of Nanosized Metals and Metal Oxides on the Thermal Behaviors of Insensitive High Energetic Compound ICM-102. Journal of Physical Chemistry C, 2019, 123, 31108-31118.	3.1	11

#	Article	IF	Citations
145	Hunting for Energetic Complexes as Hypergolic Promoters for Green Propellants Using Hydrogen Peroxide as Oxidizer. Inorganic Chemistry, 2021, 60, 17033-17039.	4.0	11
146	Theoretical insight into density and stability differences of RDX, HMX and CL-20. CrystEngComm, 2022, 24, 1537-1545.	2.6	11
147	Self-assembly of iodine-containing oxidants with nitrogen-rich heterocyclic compounds for novel energetic biocidal agents. Chemical Engineering Journal, 2022, 442, 136326.	12.7	11
148	Recent advances in the treatment of lignin in papermaking wastewater. World Journal of Microbiology and Biotechnology, 2022, 38, 116 .	3.6	11
149	Comparative assessment of the methanogenic steps of single and two-stage processes without or with a previous hydrolysis of cassava distillage. Bioresource Technology, 2013, 147, 1-6.	9.6	10
150	In Situ Encapsulation of Imidazolium Proton Carriers in Anionic Open Frameworks Leads the Way to Proton-Conducting Materials. European Journal of Inorganic Chemistry, 2017, 2017, 2295-2300.	2.0	10
151	Water stable oxalate-based coordination polymers with <i>in situ</i> generated cyclic dipeptides showing high proton conductivity. Dalton Transactions, 2018, 47, 15288-15292.	3.3	10
152	Cellulolytic Microflora Pretreatment Increases the Efficiency of Anaerobic Co-digestion of Rice Straw and Pig Manure. Bioenergy Research, 2019, 12, 703-713.	3.9	10
153	From energetic cobalt pentazolate to cobalt@nitrogen-doped carbons as efficient electrocatalysts for oxygen reduction. Science China Materials, 2019, 62, 1403-1411.	6.3	10
154	A pentazolate-based bowl-shaped molecular container. Dalton Transactions, 2020, 49, 17542-17546.	3.3	10
155	Depolymerization of holocellulose from Chinese herb residues by the mixture of lignin-derived deep eutectic solvent with water. Carbohydrate Polymers, 2020, 248, 116793.	10.2	10
156	Theoretical Study on Hydrolytic Stability of Borohydride-Rich Hypergolic Ionic Liquids. Journal of Physical Chemistry A, 2020, 124, 2942-2950.	2.5	10
157	Tetrazolo[1,5-b]pyridazine as a versatile scaffold for construction of multipurpose energetic materials. Energetic Materials Frontiers, 2022, 3, 137-145.	3.2	10
158	Carboraneâ€Derivatized Lowâ€Melting Salts with Etherâ€Functionalized Cations – Preparation and Properties. European Journal of Inorganic Chemistry, 2011, 2011, 1910-1920.	2.0	9
159	Hydrogen bonding distribution and its effect on sensitivity of planar tricyclic polyazole energetic materials. Chemical Engineering Journal, 2022, 433, 134479.	12.7	9
160	Unearthing hidden hypergolic potential of energetic complexes with hydrogen peroxide. Combustion and Flame, 2022, 244, 112235.	5.2	9
161	Exploring the reactive chemistry of FOX-7: synthesis of cyclic triazinane-based energetic materials featuring the FOX-7 backbone. New Journal of Chemistry, 2019, 43, 10429-10433.	2.8	8
162	Structural Analysis and Controllable Fabrication of Two Pentazolate-Based 3D Topological Networks. Inorganic Chemistry, 2021, 60, 8409-8413.	4.0	8

#	Article	IF	Citations
163	Dye-assembled two-dimensional porous HMX for enhanced energy release and safety performance. Energetic Materials Frontiers, 2021, 2, 139-146.	3.2	8
164	New Insight into the Aromaticity of <i>cyclo</i> -N ₅ ^{â€"} by Constructing 3D Arrays in Crystal Structures. Crystal Growth and Design, 2021, 21, 33-39.	3.0	7
165	Pseudomonas nicosulfuronedens sp. nov., a nicosulfuron degrading bacterium, isolated from a microbial consortium. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	1.7	7
166	Unique thermal and combustion behaviors of composite propellants containing a high-energy insensitive nitropyrimidine derivative. Combustion and Flame, 2022, 237, 111855.	5.2	7
167	Multi-parallel microfluidic recrystallization and characterization of explosives. Energetic Materials Frontiers, 2021, 2, 278-286.	3.2	7
168	Self-Assembly of Ionic Liquids and Metal Complexes in Super-Cages of NaY: Integration of Free Catalysts and Solvent Molecules into Confined Catalytic Sites. Chinese Journal of Catalysis, 2010, 31, 933-937.	14.0	6
169	Electrically Switchable Capillarity of Ionic Liquids. Journal of Adhesion Science and Technology, 2012, 26, 2069-2078.	2.6	6
170	Dressing technology of arc diamond wheel by roll abrading in aspheric parallel grinding. International Journal of Advanced Manufacturing Technology, 2019, 105, 2699-2706.	3.0	6
171	Acetone, butanol, and ethanol production from puerariae slag hydrolysate through ultrasound-assisted dilute acid by Clostridium beijerinckii YBS3. Bioresource Technology, 2020, 316, 123899.	9.6	6
172	Template-Free Fabrication of Refractive Index Tunable Polysiloxane Coating Using Homogeneous Embedding Strategy: Application in High-Power Laser System. Nanomaterials, 2020, 10, 381.	4.1	6
173	Recent advances in synthesis and crystal structures of metal pentazolate salts. CrystEngComm, 2021, 23, 5551-5559.	2.6	6
174	Recent advances in hypergolic ionic liquids with broad potential for propellant applications. FirePhysChem, 2022, 2, 236-252.	3.4	6
175	Exploration of the key functional proteins from an efficient cellulolytic microbial consortium using dilution-to-extinction approach. Journal of Environmental Sciences, 2016, 43, 199-207.	6.1	5
176	Cationic effect on properties related to thermal stability and ignition delay for hypergolic ionic liquids. Journal of Molecular Liquids, 2021, 336, 116572.	4.9	5
177	Effects of revegetation on the composition and diversity of bacterial and fungal communities of sandification land soil, in Southern China. Environmental Monitoring and Assessment, 2021, 193, 706.	2.7	5
178	AC Electrochemical Stability of Ionic Liquids. Chemistry Letters, 2011, 40, 1423-1425.	1.3	4
179	Silica-Based Sol-Gel Coating with High Transmission at 1053 and 527 nm and Absorption at 351 nm for Frequency-Converting Crystals in High-Power Laser System. Applied Sciences (Switzerland), 2019, 9, 5038.	2.5	4
180	From heart drug to propellant fuels: Designing nitroglycerin-ionic liquid composite as green high-energy hypergolic fluids. Combustion and Flame, 2021, 233, 111597.	5.2	4

#	Article	IF	CITATIONS
181	Preparation of polysiloxane coating for laser application with improved curing property based on copolymerization modification. Journal of Coatings Technology Research, 2022, 19, 1233-1241.	2.5	4
182	HYPERGOLIC IONIC LIQUID FUELS AND OXIDIZERS. International Journal of Energetic Materials and Chemical Propulsion, 2014, 13, 251-285.	0.3	3
183	Adaptive laser conditioning of reflective thin film based on photo thermal lens probe. Review of Scientific Instruments, 2017, 88, 124901.	1.3	2
184	Predictive Modelling of Sugar Release from Blended Garden Wastes in a Microwave-Assisted Hot Water Process. Waste and Biomass Valorization, 2021, 12, 3009-3018.	3.4	2
185	Research on the Signal De-noising Method of Acoustic Emission in Fused Silica Grinding. , 2018, , .		1
186	Enhancement of Butanol Production in a Newly Selected Strain through Accelerating Phase Shift by Different Phases C/N Ratio Regulation from Puerariae Slag Hydrolysate. Biotechnology and Bioprocess Engineering, 2021, 26, 256-264.	2.6	1
187	Energetic complexes as promoters for the green hypergolic bipropellant of EIL-H2O2 combinations. FirePhysChem, 2021, , .	3.4	1
188	Development of Ionic Liquids as Green Reaction Media and Catalysts. ChemInform, 2004, 35, no.	0.0	0
189	From CO Oxidation to CO2 Activation: An Unexpected Catalytic Activity of Polymer-Supported Nanogold ChemInform, 2005, 36, no.	0.0	0
190	Efficient and Eco-Friendly Process for the Synthesis of N-Substituted 4-Methylene-2-oxazolidinones in lonic Liquids ChemInform, 2005, 36, no.	0.0	0
191	lonic Liquid as an Efficient Promoting Medium for Fixation of Carbon Dioxide: A Clean Method for the Synthesis of 5-Methylene-1,3-oxazolidin-2-ones from Propargylic Alcohols, Amines, and Carbon Dioxide Catalyzed by Cu(I) under Mild Conditions ChemInform, 2006, 37, no.	0.0	0
192	Molecular and crystal insights into the structural design of low-sensitivity energetic materials. Theoretical and Computational Chemistry, 2022, , 435-458.	0.4	0