List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4388595/publications.pdf Version: 2024-02-01

IVH-DINC HSU

#	Article	IF	CITATIONS
1	Nanofiltration through pH-regulated bipolar cylindrical nanopores for solution containing symmetric, asymmetric, and mixed salts. Journal of Membrane Science, 2022, 641, 119869.	8.2	4
2	Space charge modulation and ion current rectification of a cylindrical nanopore functionalized with polyelectrolyte brushes subject to an applied pH-gradient. Journal of Colloid and Interface Science, 2022, 605, 571-581.	9.4	10
3	Pressure-driven power generation and ion separation using a non-uniformly charged nanopore. Journal of Colloid and Interface Science, 2022, 607, 1120-1130.	9.4	5
4	Improving the osmotic energy conversion efficiency of multiple nanopores by a cross flow. Journal of Membrane Science, 2022, 644, 120075.	8.2	8
5	Nanosensing of Acetylcholine Molecules: Influence of the Association Mechanism. Langmuir, 2022, 38, 289-298.	3.5	2
6	Controllable interface engineering of g-C3N4/CuS nanocomposite photocatalysts. Journal of Alloys and Compounds, 2022, 911, 165020.	5.5	25
7	Improving the performance of salinity gradient power generation by a negative pressure difference. Journal of the Taiwan Institute of Chemical Engineers, 2022, 134, 104351.	5.3	3
8	Improving stability of MXenes. Nano Research, 2022, 15, 6551-6567.	10.4	87
9	Electrokinetic behavior of bullet-shaped nanopores modified by functional groups: Influence of finite thickness of modified layer. Journal of Colloid and Interface Science, 2021, 582, 741-751.	9.4	15
10	Electrokinetic behavior of a pH-regulated dielectric cylindrical nanopore. Journal of Colloid and Interface Science, 2021, 588, 94-100.	9.4	8
11	Amorphous mesoporous matrix from metal-organic framework UiO-66 template with strong nucleophile substitution. Chemosphere, 2021, 268, 129155.	8.2	2
12	Nanopore-based desalination subject to simultaneously applied pressure gradient and gating potential. Journal of Colloid and Interface Science, 2021, 594, 737-744.	9.4	8
13	A dynamic anode boosting sulfamerazine mineralization <i>via</i> electrochemical oxidation. Journal of Materials Chemistry A, 2021, 10, 192-208.	10.3	12
14	Theoretical Modeling of Nanopore-Based Detection of Trace Concentrations of Cesium lons in an Aqueous Environment. Journal of Physical Chemistry C, 2021, 125, 24211-24220.	3.1	3
15	Origin of Ultrahigh Rectification in Polyelectrolyte Bilayers Modified Conical Nanopores. Journal of Physical Chemistry Letters, 2021, 12, 11858-11864.	4.6	10
16	Tunable Current Rectification and Selectivity Demonstrated in Nanofluidic Diodes through Kinetic Functionalization. Journal of Physical Chemistry Letters, 2020, 11, 60-66.	4.6	42
17	Pressure-driven energy conversion of conical nanochannels: Anomalous dependence of power generated and efficiency on pH. Journal of Colloid and Interface Science, 2020, 564, 491-498.	9.4	22
18	Ultrashort nanopores of large radius can generate anomalously high salinity gradient power. Electrochimica Acta, 2020, 353, 136613.	5.2	15

#	Article	IF	CITATIONS
19	Pressure-driven ion separation through a pH-regulated cylindrical nanopore. Journal of Membrane Science, 2020, 604, 118073.	8.2	17
20	Detection of the trace level of heavy metal ions by pH-regulated conical nanochannels. Journal of the Taiwan Institute of Chemical Engineers, 2020, 109, 145-152.	5.3	12
21	Built-in electric field-assisted step-scheme heterojunction of carbon nitride-copper oxide for highly selective electrochemical detection of p-nonylphenol. Electrochimica Acta, 2020, 354, 136658.	5.2	26
22	lon current rectification behavior of a nanochannel having nonuniform crossâ€section. Electrophoresis, 2020, 41, 802-810.	2.4	15
23	Development of a mathematical model of viscosity for prediction of emulsion of Water/Wax crude oil. Petroleum Science and Technology, 2020, 38, 478-485.	1.5	0
24	Estimating the thermodynamic equilibrium constants of metal oxide particles through a general electrophoresis model. Journal of Colloid and Interface Science, 2020, 574, 293-299.	9.4	0
25	Modulation of Charge Density and Charge Polarity of Nanopore Wall by Salt Gradient and Voltage. ACS Nano, 2019, 13, 9868-9879.	14.6	42
26	Unraveling the Anomalous Surface-Charge-Dependent Osmotic Power Using a Single Funnel-Shaped Nanochannel. ACS Nano, 2019, 13, 13374-13381.	14.6	86
27	Regulating the ionic current rectification behavior of branched nanochannels by filling polyelectrolytes. Journal of Colloid and Interface Science, 2019, 557, 683-690.	9.4	18
28	Protection against Neurodegeneration in the Hippocampus Using Sialic Acid- and 5-HT-Moduline-Conjugated Lipopolymer Nanoparticles. ACS Biomaterials Science and Engineering, 2019, 5, 1311-1320.	5.2	8
29	Electrokinetic ion transport in an asymmetric double-gated nanochannel with a pH-tunable zwitterionic surface. Physical Chemistry Chemical Physics, 2019, 21, 7773-7780.	2.8	12
30	An ultrathin ionomer interphase for high efficiency lithium anode in carbonate based electrolyte. Nature Communications, 2019, 10, 5824.	12.8	62
31	lon transport in a pH-regulated conical nanopore filled with a power-law fluid. Journal of Colloid and Interface Science, 2019, 537, 358-365.	9.4	10
32	Voltage-controlled ion transport and selectivity in a conical nanopore functionalized with pH-tunable polyelectrolyte brushes. Journal of Colloid and Interface Science, 2019, 537, 496-504.	9.4	20
33	Dual pH Gradient and Voltage Modulation of Ion Transport and Current Rectification in Biomimetic Nanopores Functionalized with a pH-Tunable Polyelectrolyte. Journal of Physical Chemistry C, 2019, 123, 12437-12443.	3.1	28
34	Effective adsorption of phosphoric acid by UiO-66 and UiO-66-NH2 from extremely acidic mixed waste acids: Proof of concept. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 483-486.	5.3	17
35	Power generation from a pH-regulated nanochannel through reverse electrodialysis: Effects of nanochannel shape and non-uniform H+ distribution. Electrochimica Acta, 2019, 294, 84-92.	5.2	58
36	An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon, 2018, 130, 652-663.	10.3	250

#	Article	IF	CITATIONS
37	Rectification of ionic current in nanopores functionalized with bipolar polyelectrolyte brushes. Sensors and Actuators B: Chemical, 2018, 258, 1223-1229.	7.8	53
38	Influence of temperature and electroosmotic flow on the rectification behavior of conical nanochannels. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 142-149.	5.3	18
39	Water stable metal-organic framework as adsorbent from aqueous solution: A mini-review. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 176-183.	5.3	60
40	Influence of salt valence on the rectification behavior of nanochannels. Journal of Colloid and Interface Science, 2018, 531, 483-492.	9.4	31
41	Ionic Current Rectification in a Conical Nanopore: Influences of Electroosmotic Flow and Type of Salt. Journal of Physical Chemistry C, 2017, 121, 4576-4582.	3.1	66
42	Importance of polyelectrolyte modification for rectifying the ionic current in conically shaped nanochannels. Physical Chemistry Chemical Physics, 2017, 19, 5351-5360.	2.8	45
43	Separation of charge-regulated polyelectrolytes by pH-assisted diffusiophoresis. Physical Chemistry Chemical Physics, 2017, 19, 9059-9063.	2.8	3
44	lon Current Rectification Behavior of Bioinspired Nanopores Having a pH-Tunable Zwitterionic Surface. Analytical Chemistry, 2017, 89, 3952-3958.	6.5	62
45	Salt-Dependent Ion Current Rectification in Conical Nanopores: Impact of Salt Concentration and Cone Angle. Journal of Physical Chemistry C, 2017, 121, 28139-28147.	3.1	33
46	Sedimentation of a pH-Regulated Nanoparticle in a Generalized Gravitational Field. Journal of Physical Chemistry C, 2017, 121, 24272-24281.	3.1	2
47	Power generation by a pH-regulated conical nanopore through reverse electrodialysis. Journal of Power Sources, 2017, 366, 169-177.	7.8	73
48	Diffusiophoresis of a pH-regulated polyelectrolyte in a pH-regulated nanochannel. Sensors and Actuators B: Chemical, 2017, 252, 1132-1139.	7.8	9
49	Diffusiophoresis of a pH-regulated toroidal polyelectrolyte in a solution containing multiple ionic species. Journal of Colloid and Interface Science, 2017, 486, 351-358.	9.4	Ο
50	Modeling the release of a reagent from an inwardly tapered disk with a central hole. Journal of Engineering Mathematics, 2016, 98, 1-9.	1.2	1
51	Salinity gradient power: Optimization of nanopore size. Electrochimica Acta, 2016, 219, 790-797.	5.2	41
52	Highly Charged Particles Cause a Larger Current Blockage in Micropores Compared to Neutral Particles. ACS Nano, 2016, 10, 8413-8422.	14.6	57
53	Salt gradient driven ion transport in solid-state nanopores: the crucial role of reservoir geometry and size. Physical Chemistry Chemical Physics, 2016, 18, 30160-30165.	2.8	55
54	Influences of Cone Angle and Surface Charge Density on the Ion Current Rectification Behavior of a Conical Nanopore. Journal of Physical Chemistry C, 2016, 120, 25620-25627.	3.1	63

#	Article	IF	CITATIONS
55	lonic Current Rectification in a pH-Tunable Polyelectrolyte Brushes Functionalized Conical Nanopore: Effect of Salt Gradient. Analytical Chemistry, 2016, 88, 1176-1187.	6.5	70
56	Diffusiophoresis of a charged toroidal polyelectrolyte. Journal of Colloid and Interface Science, 2016, 471, 14-19.	9.4	2
57	Salinity gradient power: influences of temperature and nanopore size. Nanoscale, 2016, 8, 2350-2357.	5.6	99
58	Diffusiophoresis of a charged, rigid sphere in a Carreau fluid. Journal of Colloid and Interface Science, 2016, 465, 54-57.	9.4	9
59	Effect of eccentricity on the electroosmotic flow in an elliptic channel. Journal of Colloid and Interface Science, 2015, 460, 81-86.	9.4	3
60	Regulating Current Rectification and Nanoparticle Transport Through a Salt Gradient in Bipolar Nanopores. Small, 2015, 11, 4594-4602.	10.0	60
61	Influence of double-layer polarization and chemiosmosis on the diffusiophoresis of a non-spherical polyelectrolyte. Journal of Colloid and Interface Science, 2015, 446, 272-281.	9.4	5
62	Influence of electroosmotic flow on the ionic current rectification in a pH-regulated, conical nanopore. Nanoscale, 2015, 7, 14023-14031.	5.6	54
63	Electrophoresis of two spheres: Influence of double layer and van der Waals interactions. Journal of Colloid and Interface Science, 2015, 451, 170-176.	9.4	3
64	Analytical expressions for the electroosmotic flow in a charge-regulated circular channel. Electrochemistry Communications, 2015, 54, 1-5.	4.7	9
65	Diffusiophoresis of a pH-regulated polyelectrolyte in a nanopore of nonuniform cross section. Microfluidics and Nanofluidics, 2015, 19, 647-652.	2.2	3
66	Diffusiophoresis of polyelectrolytes: Effects of temperature, pH, type of ionic species and bulk concentration. Journal of Colloid and Interface Science, 2015, 459, 167-174.	9.4	7
67	Unsteady dissolution of particle of various shapes in a stagnant liquid. Chemical Engineering Science, 2015, 123, 573-578.	3.8	7
68	Diffusiophoresis of a soft, pH-regulated particle in a solution containing multiple ionic species. Journal of Colloid and Interface Science, 2015, 438, 196-203.	9.4	17
69	Influence of polyelectrolyte shape on its sedimentation behavior: effect of relaxation electric field. Soft Matter, 2014, 10, 8864-8874.	2.7	5
70	Influence of temperature on the electroosmotic flow in a pH-regulated, zwitterionic cylindrical pore filled with multiple monovalent ions. Electrochemistry Communications, 2014, 48, 169-172.	4.7	5
71	Electrophoresis of pH-regulated particles in the presence of multiple ionic species. AICHE Journal, 2014, 60, 451-458.	3.6	10
72	Theoretical study of temperature influence on the electrophoresis of a pH-regulated polyelectrolyte. Analytica Chimica Acta, 2014, 847, 80-89.	5.4	21

Јүн-Ping Hsu

#	Article	IF	CITATIONS
73	Diffusiophoresis of a pH-regulated, zwitterionic polyelectrolyte in a solution containing multiple ionic species. Chemical Engineering Science, 2014, 118, 164-172.	3.8	4
74	lonic current in a pH-regulated nanochannel filled with multiple ionic species. Microfluidics and Nanofluidics, 2014, 17, 933-941.	2.2	13
75	Simulation of Polyelectrolyte Electrophoresis: Effects of the Aspect Ratio, Double-Layer Polarization, Effective Charge, and Electroosmotic Flow. Langmuir, 2014, 30, 8177-8185.	3.5	6
76	Electrodiffusioosmosis in a Solid-State Nanopore Connecting Two Large Reservoirs: Optimum Pore Size. Journal of Physical Chemistry C, 2014, 118, 19498-19504.	3.1	12
77	Electrophoresis of pH-regulated, zwitterionic particles: Effect of self-induced nonuniform surface charge. Journal of Colloid and Interface Science, 2014, 421, 154-159.	9.4	10
78	Influence of metal oxide nanoparticles concentration on their zeta potential. Journal of Colloid and Interface Science, 2013, 407, 22-28.	9.4	115
79	Incompatible reaction evaluation and accident investigation of various acids in chemical industries. Journal of Thermal Analysis and Calorimetry, 2013, 114, 1225-1229.	3.6	Ο
80	Electrophoresis of a Charge-Regulated Zwitterionic Particle: Influence of Temperature and Bulk Salt Concentration. Langmuir, 2013, 29, 2427-2433.	3.5	5
81	Diffusiophoresis of a Charged Sphere in a Necked Nanopore. Journal of Physical Chemistry C, 2013, 117, 19226-19233.	3.1	8
82	Electrokinetic flow in a pH-regulated, cylindrical nanochannel containing multiple ionic species. Microfluidics and Nanofluidics, 2013, 15, 847-857.	2.2	12
83	Electrophoresis of a soft sphere in a necked cylindrical nanopore. Physical Chemistry Chemical Physics, 2013, 15, 11758.	2.8	13
84	Importance of temperature on the diffusiophoretic behavior of a charge-regulated zwitterionic particle. Physical Chemistry Chemical Physics, 2013, 15, 7512.	2.8	7
85	Influence of temperature on the gel electrophoresis of a pH-regulated, zwitterionic sphere. Soft Matter, 2013, 9, 11534.	2.7	3
86	Electrokinetic behavior of a pH-regulated, zwitterionic nanocylinder in a cylindrical nanopore filled with multiple ionic species. Journal of Colloid and Interface Science, 2013, 411, 162-168.	9.4	0
87	Electrophoresis of Deformable Polyelectrolytes in a Nanofluidic Channel. Langmuir, 2013, 29, 2446-2454.	3.5	12
88	Diffusiophoresis of Polyelectrolytes in Nanodevices: Importance of Boundary. Journal of Physical Chemistry C, 2013, 117, 9469-9476.	3.1	7
89	Electrophoresis of a pH-Regulated Zwitterionic Nanoparticle in a pH-Regulated Zwitterionic Capillary. Langmuir, 2013, 29, 7162-7169.	3.5	5
90	Electrophoresis of a charge-regulated soft sphere: Importance of effective membrane charge. Colloids and Surfaces B: Biointerfaces, 2013, 102, 864-870.	5.0	6

#	Article	IF	CITATIONS
91	Capillary Osmosis in a Charged Nanopore Connecting Two Large Reservoirs. Langmuir, 2013, 29, 9598-9603.	3.5	19
92	Gel electrophoresis of a chargeâ€regulated, biâ€functional particle. Electrophoresis, 2013, 34, 785-791.	2.4	14
93	Electrokinetics of pH-regulated zwitterionic polyelectrolyte nanoparticles. Nanoscale, 2012, 4, 7575.	5.6	38
94	Gel electrophoresis: Importance of concentration-dependent permittivity and double-layer polarization. Chemical Engineering Science, 2012, 84, 574-579.	3.8	17
95	Regulating DNA translocation through functionalized soft nanopores. Nanoscale, 2012, 4, 2685.	5.6	78
96	Influence of the shape of a polyelectrolyte on its electrophoretic behavior. Soft Matter, 2012, 8, 9469.	2.7	21
97	Electrokinetic ion and fluid transport in nanopores functionalized by polyelectrolyte brushes. Nanoscale, 2012, 4, 5169.	5.6	69
98	Electrophoresis of a Particle at an Arbitrary Surface Potential and Double Layer Thickness: Importance of Nonuniformly Charged Conditions. Langmuir, 2012, 28, 2997-3004.	3.5	10
99	Importance of Boundary on the Electrophoresis of a Soft Cylindrical Particle. Journal of Physical Chemistry B, 2012, 116, 12626-12632.	2.6	10
100	Importance of Multiple Ionic Species on the Diffusiophoresis of a Rigid, Charged-Regulated, Zwitterionic Sphere. Journal of Physical Chemistry C, 2012, 116, 15126-15133.	3.1	7
101	Importance of Boundary Effect on the Diffusiophoretic Behavior of a Charged Particle in an Electrolyte Medium. Journal of Physical Chemistry C, 2012, 116, 4455-4464.	3.1	6
102	Importance of Temperature Effect on the Electrophoretic Behavior of Charge-Regulated Particles. Langmuir, 2012, 28, 1013-1019.	3.5	38
103	Controlling pH-Regulated Bionanoparticles Translocation through Nanopores with Polyelectrolyte Brushes. Analytical Chemistry, 2012, 84, 9615-9622.	6.5	51
104	Importance of Electroosmotic Flow and Multiple Ionic Species on the Electrophoresis of a Rigid Sphere in a Charge-Regulated Zwitterionic Cylindrical Pore. Langmuir, 2012, 28, 10942-10947.	3.5	7
105	Electrophoresis of a soft toroid of nonuniform structure. Colloids and Surfaces B: Biointerfaces, 2012, 98, 36-42.	5.0	2
106	Ion Concentration Polarization in Polyelectrolyte-Modified Nanopores. Journal of Physical Chemistry C, 2012, 116, 8672-8677.	3.1	114
107	Importance of Ionic Polarization Effect on the Electrophoretic Behavior of Polyelectrolyte Nanoparticles in Aqueous Electrolyte Solutions. Journal of Physical Chemistry C, 2012, 116, 367-373.	3.1	36
108	DNA Electrokinetic Translocation through a Nanopore: Local Permittivity Environment Effect. Journal of Physical Chemistry C, 2012, 116, 4793-4801.	3.1	44

#	Article	IF	CITATIONS
109	Field Effect Control of Surface Charge Property and Electroosmotic Flow in Nanofluidics. Journal of Physical Chemistry C, 2012, 116, 4209-4216.	3.1	100
110	Diffusiophoresis of a polyelectrolyte in a salt concentration gradient. Electrophoresis, 2012, 33, 1068-1078.	2.4	17
111	Analytical expressions for pH-regulated electroosmotic flow in microchannels. Colloids and Surfaces B: Biointerfaces, 2012, 93, 260-262.	5.0	6
112	Importance of the porous structure of a soft particle on its electrophoretic behavior. Colloids and Surfaces B: Biointerfaces, 2012, 93, 154-160.	5.0	11
113	Counterion condensation in pH-regulated polyelectrolytes. Electrochemistry Communications, 2012, 19, 97-100.	4.7	33
114	Effects of double-layer polarization and counterion condensation on the electrophoresis of polyelectrolytes. Soft Matter, 2011, 7, 396-411.	2.7	66
115	Diffusiophoresis of a Nonuniformly Charged Sphere in a Narrow Cylindrical Pore. Journal of Physical Chemistry C, 2011, 115, 12592-12603.	3.1	2
116	Electrophoresis of a Charge-Regulated Sphere in a Narrow Cylindrical Pore Filled with Multiple Ionic Species. Journal of Physical Chemistry B, 2011, 115, 3972-3980.	2.6	15
117	Influence of boundary on the effect of double-layer polarization and the electrophoretic behavior of soft biocolloids. Colloids and Surfaces B: Biointerfaces, 2011, 88, 559-567.	5.0	25
118	Diffusiophoresis of a soft spherical particle along the axis of a cylindrical microchannel. Chemical Engineering Science, 2011, 66, 2199-2210.	3.8	10
119	Preparation of mineral source water from deep sea water: Reduction of sulfate ion using selemion ASV membrane. AICHE Journal, 2011, 57, 1033-1042.	3.6	6
120	Influence of membrane layer properties on the electrophoretic behavior of a soft particle. Electrophoresis, 2011, 32, 3053-3061.	2.4	8
121	Electrophoresis of an arbitrarily oriented toroid in an unbounded electrolyte solution. Colloids and Surfaces B: Biointerfaces, 2011, 82, 505-512.	5.0	6
122	Electrical potentials of two identical particles with fixed surface charge density in a salt-free medium. Journal of Colloid and Interface Science, 2011, 356, 550-556.	9.4	4
123	Diffusiophoresis of a nonuniformly charged sphere in an electrolyte solution. Journal of Chemical Physics, 2011, 134, 064708.	3.0	9
124	Diffusiophoresis of a sphere along the axis of a cylindrical pore. Journal of Colloid and Interface Science, 2010, 342, 598-606.	9.4	18
125	Electrical potentials of two identical planar, cylindrical, and spherical colloidal particles in a salt-free medium. Journal of Colloid and Interface Science, 2010, 348, 402-407.	9.4	3
126	Model for Sludge Cake Drying Accounting for Developing Cracks. Drying Technology, 2010, 28, 922-926.	3.1	22

#	Article	IF	CITATIONS
127	Unified Analysis of Dewatering and Drying of Sludge Cake. Drying Technology, 2010, 28, 877-880.	3.1	14
128	Electrophoresis of a Charge-Regulated Soft Sphere in a Charged Cylindrical Pore. Journal of Physical Chemistry B, 2010, 114, 1621-1631.	2.6	25
129	Diffusiophoresis of a Soft Sphere Normal to Two Parallel Disks. Langmuir, 2010, 26, 16037-16047.	3.5	17
130	Electrophoresis of a Membrane-Coated Cylindrical Particle Positioned Eccentrically along the Axis of a Narrow Cylindrical Pore. Journal of Physical Chemistry C, 2010, 114, 16576-16587.	3.1	22
131	Diffusiophoresis of a Charge-Regulated Sphere along the Axis of an Uncharged Cylindrical Pore. Langmuir, 2010, 26, 8648-8658.	3.5	20
132	Diffusiophoresis of a Charge-Regulated Spherical Particle Normal to Two Parallel Disks. Journal of Physical Chemistry B, 2010, 114, 2766-2778.	2.6	19
133	Diffusiophoresis of an Ellipsoid along the Axis of a Cylindrical Pore. Journal of Physical Chemistry B, 2010, 114, 8043-8055.	2.6	7
134	Effect of Multiple Ionic Species on the Electrophoretic Behavior of a Charge-Regulated Particle. Langmuir, 2010, 26, 16857-16864.	3.5	33
135	Sedimentation adsorption of a charge-regulated colloidal particle onto a large charged disk. Journal of Chemical Physics, 2009, 130, 194901.	3.0	2
136	Electrophoretic behaviors of human hepatoma HepG2 cells. Electrophoresis, 2009, 30, 1531-1537.	2.4	2
137	Electrophoresis of a finite rod along the axis of a long cylindrical microchannel filled with Carreau fluids. Microfluidics and Nanofluidics, 2009, 7, 383-392.	2.2	19
138	Electrophoresis of a soft toroid coaxially along the axis of a cylindrical pore. Chemical Engineering Science, 2009, 64, 5247-5254.	3.8	9
139	3D simulations of hydrodynamic drag on a nonhomogeneously structured permeable sphere and advective flow thereof. Journal of Colloid and Interface Science, 2009, 336, 850-856.	9.4	11
140	Boundary effect on electrophoresis in a Carreau fluid: Simulated biocolloids at an arbitrary position in a charged spherical cavity. Colloids and Surfaces B: Biointerfaces, 2009, 69, 8-14.	5.0	6
141	Diffusiophoresis of a Soft Spherical Particle in a Spherical Cavity. Journal of Physical Chemistry B, 2009, 113, 8646-8656.	2.6	33
142	Stability of Soft Colloidal Particles in a Salt-Free Medium. Langmuir, 2009, 25, 9045-9050.	3.5	5
143	Boundary Effect on Diffusiophoresis: Spherical Particle in a Spherical Cavity. Langmuir, 2009, 25, 1772-1784.	3.5	39
144	Effect of Electroosmotic Flow on the Electrophoresis of a Membrane-Coated Sphere along the Axis of a Cylindrical Pore. Journal of Physical Chemistry B, 2009, 113, 7701-7708.	2.6	36

#	Article	IF	CITATIONS
145	Translation of two coaxial, nonhomogeneously structured flocs normal to a plate. Colloid and Polymer Science, 2008, 286, 1593-1604.	2.1	0
146	Electrophoresis of a chargeâ€regulated toroid normal to a large disk. Electrophoresis, 2008, 29, 348-357.	2.4	11
147	Modeling the melt transesterification of polycarbonate. Journal of Applied Polymer Science, 2008, 108, 694-704.	2.6	6
148	Effects of double-layer polarization and electroosmotic flow on the electrophoresis of a finite cylinder along the axis of a cylindrical pore. Chemical Engineering Science, 2008, 63, 4561-4569.	3.8	11
149	Electrophoresis of an Ellipsoid along the Axis of a Cylindrical Pore:  Effect of a Charged Boundary. Langmuir, 2008, 24, 2929-2937.	3.5	10
150	Effects of Double-Layer Polarization and Electroosmotic Flow on the Electrophoresis of an Ellipsoid in a Spherical Cavity. Journal of Physical Chemistry B, 2008, 112, 11270-11277.	2.6	3
151	The stability of a salt-free colloidal dispersion. Journal of Chemical Physics, 2008, 128, 104509.	3.0	2
152	Electrophoresis of a Sphere along the Axis of a Cylindrical Pore:Â Effects of Double-Layer Polarization and Electroosmotic Flow. Langmuir, 2007, 23, 6198-6204.	3.5	43
153	Effect of a Charged Boundary on Electrophoresis in a Carreau Fluid:  A Sphere at an Arbitrary Position in a Spherical Cavity. Langmuir, 2007, 23, 8637-8646.	3.5	19
154	Diffusiophoresis of Concentrated Suspensions of Spherical Particles with Distinct Ionic Diffusion Velocities. Journal of Physical Chemistry B, 2007, 111, 2533-2539.	2.6	31
155	Electrophoresis of Two Identical Rigid Spheres in a Charged Cylindrical Pore. Journal of Physical Chemistry B, 2007, 111, 2579-2586.	2.6	14
156	Approximate Analytical Expressions for the Electrical Potential in a Cavity Containing Salt-Free Medium. Langmuir, 2007, 23, 10448-10454.	3.5	5
157	Electrophoresis of a Rigid Sphere in a Carreau Fluid Normal to a Large Charged Disk. Journal of Physical Chemistry B, 2007, 111, 12351-12361.	2.6	13
158	Evaluation of the electric force in electrophoresis. Journal of Colloid and Interface Science, 2007, 305, 324-329.	9.4	75
159	Dynamic electrophoresis of droplet dispersions at low surface potentials. Journal of Colloid and Interface Science, 2007, 306, 421-427.	9.4	6
160	Residence time distribution for electrokinetic flow through a microchannel comprising a bundle of cylinders. Journal of Colloid and Interface Science, 2007, 307, 265-271.	9.4	4
161	Ionic separation efficiency of a novel electric-field-assisted membrane module comprising an array of microchannel units. Journal of Colloid and Interface Science, 2007, 307, 516-523.	9.4	2
162	Effect of a charged boundary on electrophoresis: A sphere at an arbitrary position in a spherical cavity. Journal of Colloid and Interface Science, 2007, 310, 281-291.	9.4	12

Јүн-Ping Hsu

#	Article	IF	CITATIONS
163	Effect of charged boundary on electrophoresis: Sphere in spherical cavity at arbitrary potential and double-layer thickness. Journal of Colloid and Interface Science, 2007, 314, 256-263.	9.4	18
164	Drag on two nonuniformly structured flocs moving along the axis of a cylindrical tube. Colloid and Polymer Science, 2007, 285, 985-998.	2.1	2
165	Melt Transesterification of Polycarbonate Catalyzed by DMAP. Industrial & Engineering Chemistry Research, 2006, 45, 2672-2676.	3.7	17
166	Critical Coagulation Concentration of a Salt-Free Colloidal Dispersion. Journal of Physical Chemistry B, 2006, 110, 7600-7604.	2.6	6
167	Electrophoresis of a Spherical Dispersion of Polyelectrolytes in a Salt-Free Solution. Journal of Physical Chemistry B, 2006, 110, 1490-1498.	2.6	41
168	Approximate Analytical Expressions for the Electrical Potential between Two Planar, Cylindrical, and Spherical Surfaces. Journal of Physical Chemistry B, 2006, 110, 25007-25012.	2.6	9
169	Electrophoresis of a Finite Cylinder Positioned Eccentrically along the Axis of a Long Cylindrical Pore. Journal of Physical Chemistry B, 2006, 110, 17607-17615.	2.6	29
170	Theoretical Analysis of a Novel Electrical Field Assisted Membrane Module Comprising an Array of Microchannel Units. Journal of Physical Chemistry B, 2006, 110, 10082-10087.	2.6	3
171	A polynomial regression model for the response of various accelerating techniques on maize wine maturation. Food Chemistry, 2006, 94, 603-607.	8.2	7
172	Electrokinetic flow in an elliptic microchannel covered by ion-penetrable membrane. Colloids and Surfaces B: Biointerfaces, 2006, 53, 127-138.	5.0	4
173	Sedimentation of a cylindrical particle along the axis of a cylindrical tube filled with Carreau fluid. Powder Technology, 2006, 166, 1-13.	4.2	7
174	Sedimentation of a concentrated dispersion of composite colloidal particles. Journal of Colloid and Interface Science, 2006, 295, 279-290.	9.4	8
175	Dynamic electrophoresis of a spherical dispersion of soft particles subject to a stress-jump condition. Journal of Colloid and Interface Science, 2006, 299, 464-471.	9.4	5
176	Electrophoresis of a spherical particle along the axis of a cylindrical pore filled with a Carreau fluid. Colloid and Polymer Science, 2006, 284, 886-892.	2.1	25
177	Theoretical analysis on diffusional release from ellipsoidal drug delivery devices. Chemical Engineering Science, 2006, 61, 1748-1752.	3.8	10
178	Electrophoresis of a non-conducting Newtonian drop of low electrical potential normal to a plane. Chemical Engineering Science, 2006, 61, 4550-4557.	3.8	6
179	Electrophoresis of a toroid along the axis of a cylindrical pore. Electrophoresis, 2006, 27, 3155-3165.	2.4	15
180	Drag force on a rigid spheroidal particle in a cylinder filled with Carreau fluid. Journal of Colloid and Interface Science, 2005, 284, 729-741.	9.4	17

Јүн-Ping Hsu

#	Article	IF	CITATIONS
181	Electrophoresis of a concentrated aqueous dispersion of non-Newtonian drops. Journal of Colloid and Interface Science, 2005, 282, 486-492.	9.4	7
182	Boundary effect on electrophoresis: finite cylinder in a cylindrical pore. Journal of Colloid and Interface Science, 2005, 283, 592-600.	9.4	31
183	Drag of a dispersion of nonhomogeneously structured flocs in a flow field. Journal of Colloid and Interface Science, 2005, 284, 332-338.	9.4	9
184	Dynamic electrophoresis of a sphere in a spherical cavity: arbitrary surface potential. Journal of Colloid and Interface Science, 2005, 285, 865-871.	9.4	9
185	Electrophoresis of a rigid sphere in a Carreau fluid normal to a planar surface. Journal of Colloid and Interface Science, 2005, 285, 857-864.	9.4	19
186	Drag on two coaxial, nonuniformly structured flocs in a uniform flow field. Journal of Colloid and Interface Science, 2005, 292, 290-298.	9.4	9
187	Modeling the controlled release of drug embedded in a plate-like polymer matrix. Chemical Engineering Science, 2005, 60, 1295-1301.	3.8	2
188	Inward release polymer matrix covered by a permeable membrane: a possible zero-order controlled release device. Chemical Engineering Science, 2005, 60, 5803-5808.	3.8	4
189	Preparation of submicron-sized Mg(OH)2 particles through precipitation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 262, 220-231.	4.7	63
190	Determination of surface charge properties of PC-12 cells by electrophoresis. Journal of Colloid and Interface Science, 2005, 285, 557-561.	9.4	10
191	Sedimentation of a cylindrical particle in a Carreau fluid. Journal of Colloid and Interface Science, 2005, 286, 392-399.	9.4	20
192	Electrophoresis of a Charge-Regulated Sphere Normal to a Large Disk. Langmuir, 2005, 21, 7588-7597.	3.5	19
193	Electrophoresis of Two Identical Cylindrical Particles along the Axis of a Cylindrical Pore. Industrial & Engineering Chemistry Research, 2005, 44, 1105-1111.	3.7	4
194	Distribution of Colloidal Particles in a Spherical Cavity. Journal of Physical Chemistry B, 2005, 109, 18048-18054.	2.6	0
195	Residence Time Distribution of a Cylindrical Microreactor. Journal of Physical Chemistry B, 2005, 109, 9160-9165.	2.6	7
196	Electrophoresis of a charge-regulated particle at an arbitrary position in a spherical cavity. Colloid and Polymer Science, 2004, 283, 10-14.	2.1	12
197	Electrophoresis of a sphere at an arbitrary position in a spherical cavity filled with Carreau fluid. Journal of Colloid and Interface Science, 2004, 280, 256-263.	9.4	22
198	Effect of ionic sizes on the stability ratio of a dispersion of particles with a charge-regulated surface. Journal of Colloid and Interface Science, 2004, 272, 352-357.	9.4	2

Јүн-Ріng Hsu

#	Article	IF	CITATIONS
199	Moving of a nonhomogeneous, porous floc normal to a rigid plate. Journal of Colloid and Interface Science, 2004, 275, 309-316.	9.4	10
200	An experimental study on the rheological properties of aqueous ceria dispersions. Journal of Colloid and Interface Science, 2004, 274, 277-284.	9.4	33
201	Electrophoresis of a spherical particle along the axis of a cylindrical pore: effect of electroosmotic flow. Journal of Colloid and Interface Science, 2004, 276, 248-254.	9.4	38
202	Electrophoresis of a concentrated dispersion of spherical particles covered by an ion-penetrable membrane layer. Journal of Colloid and Interface Science, 2004, 280, 518-526.	9.4	27
203	Effect of Ionic Size on the Deposition of Charge-Regulated Particles to a Charged Surface. Langmuir, 2004, 20, 11270-11277.	3.5	2
204	Electrophoresis of a Membrane-Coated Sphere in a Spherical Cavity. Langmuir, 2004, 20, 9415-9421.	3.5	14
205	Electrophoresis of a Concentrated Dispersion of Spherical Particles in a Non-Newtonian Fluid. Langmuir, 2004, 20, 2149-2156.	3.5	16
206	Electrophoresis in a Carreau Fluid at Arbitrary Zeta Potentials. Langmuir, 2004, 20, 7952-7959.	3.5	17
207	Electrophoresis of biological cells: Charge-regulation and multivalent counterions association model. Electrophoresis, 2003, 24, 1338-1346.	2.4	13
208	Electrophoresis in a non-Newtonian fluid: sphere in a spherical cavity. Journal of Colloid and Interface Science, 2003, 258, 283-288.	9.4	23
209	Drag force on a porous, non-homogeneous spheroidal floc in a uniform flow field. Journal of Colloid and Interface Science, 2003, 259, 301-308.	9.4	15
210	Dynamic electrophoretic mobility of a sphere in a spherical cavity. Journal of Colloid and Interface Science, 2003, 260, 118-125.	9.4	8
211	Behavior of soybean oil-in-water emulsion stabilized by nonionic surfactant. Journal of Colloid and Interface Science, 2003, 259, 374-381.	9.4	160
212	Stability of a dispersion of particles covered by a charge-regulated membrane: effect of the sizes of charged species. Journal of Colloid and Interface Science, 2003, 262, 73-80.	9.4	6
213	Electrophoresis of a charge-regulated spheroid along the axis of an uncharged cylindrical pore. Journal of Colloid and Interface Science, 2003, 264, 121-127.	9.4	7
214	Boundary effect on the drag force on a nonhomogeneous floc. Journal of Colloid and Interface Science, 2003, 264, 517-525.	9.4	12
215	Electrophoresis of a spheroid along the axis of a cylindrical pore. Chemical Engineering Science, 2003, 58, 5339-5347.	3.8	12
216	Effect of cell membrane structure of human erythrocyte on its electrophoresis. Colloids and Surfaces B: Biointerfaces, 2003, 32, 203-212.	5.0	10

#	Article	IF	CITATIONS
217	Kinetic modeling of melt transesterification of diphenyl carbonate and bisphenol-A. Polymer, 2003, 44, 5851-5857.	3.8	18
218	Estimation of the Ionic Distribution in a Reverse Micelle:Â Effect of Ionic Size. Journal of Physical Chemistry B, 2003, 107, 14429-14433.	2.6	12
219	On the Factors Influencing the Preparation of Nanosized Titania Sols. Langmuir, 2003, 19, 4448-4454.	3.5	16
220	Electrophoresis of a Spheroid in a Spherical Cavity. Langmuir, 2003, 19, 7469-7473.	3.5	13
221	Temperature dependence of the viscosity of nonpolymeric liquids. Journal of Chemical Physics, 2003, 118, 172-178.	3.0	13
222	Electrophoresis of a Nonrigid Entity in a Spherical Cavity. Journal of Physical Chemistry B, 2002, 106, 8790-8795.	2.6	7
223	Interactions between a Particle Covered by an Ion-Penetrable Charged Membrane and a Charged Surface:Â A Modified Gouyâ^Chapman Theory. Langmuir, 2002, 18, 2789-2794.	3.5	11
224	Electrophoresis of a Sphere at an Arbitrary Position in a Spherical Cavity. Langmuir, 2002, 18, 8897-8901.	3.5	23
225	Deposition of Charge-Regulated Biocolloids on a Charged Surface. Journal of Physical Chemistry B, 2002, 106, 4255-4260.	2.6	6
226	Electrical Interaction between a Spheroid and a Spherical Cavity. Langmuir, 2002, 18, 2743-2749.	3.5	3
227	Dynamic Electrophoretic Mobility in Electroacoustic Phenomenon:Â Concentrated Dispersions at Arbitrary Potentials. Journal of Physical Chemistry B, 2002, 106, 4789-4798.	2.6	27
228	Effect of Ionic Sizes on Critical Coagulation Concentration:Â Particles Covered by a Charge-Regulated Membrane. Journal of Physical Chemistry B, 2002, 106, 4269-4275.	2.6	11
229	Electrophoresis of a Finite Cylinder along the Axis of a Cylindrical Pore. Journal of Physical Chemistry B, 2002, 106, 10605-10609.	2.6	42
230	Effect of Ionic Sizes on the Electrophoretic Mobility of a Particle with a Charge-Regulated Membrane in a General Electrolyte Solution. Journal of Physical Chemistry B, 2002, 106, 2117-2122.	2.6	14
231	Electrophoretic behavior of cerebellar granule neurons. Electrophoresis, 2002, 23, 2001.	2.4	13
232	Electrokinetic Flow through an Elliptical Microchannel: Effects of Aspect Ratio and Electrical Boundary Conditions. Journal of Colloid and Interface Science, 2002, 248, 176-184.	9.4	87
233	Electrophoresis of a Concentrated Spherical Dispersion at Arbitrary Electrical Potentials. Journal of Colloid and Interface Science, 2002, 248, 398-403.	9.4	9
234	Electrophoresis of a Sphere Normal to a Plane at Arbitrary Electrical Potential and Double Layer Thickness. Journal of Colloid and Interface Science, 2002, 248, 383-388.	9.4	30

#	Article	IF	CITATIONS
235	Sedimentation of Concentrated Spherical Particles with a Charge-Regulated Surface. Journal of Colloid and Interface Science, 2002, 251, 109-119.	9.4	6
236	Drag force on a floc in a flow field: two-layer model. Chemical Engineering Science, 2002, 57, 2627-2633.	3.8	14
237	Deposition of Biocolloids on a Charged Collector Surface:Â An Ion-Penetrable Membrane Model. Langmuir, 2001, 17, 3466-3471.	3.5	6
238	Electrophoresis of a Sphere in a Spherical Cavity at Arbitrary Electrical Potentials. Langmuir, 2001, 17, 6289-6297.	3.5	29
239	Conductivity of a Concentrated Cylindrical Dispersion. Langmuir, 2001, 17, 1821-1825.	3.5	3
240	Electrokinetic Flow of an Electrolyte Solution in a Rectangular Microchannel Covered by an Ion-Penetrable Charged Membrane. Journal of Physical Chemistry B, 2001, 105, 8135-8142.	2.6	6
241	Dynamic Electrophoretic Mobility of Concentrated Spherical Dispersions. Journal of Physical Chemistry B, 2001, 105, 7239-7245.	2.6	28
242	Electrophoretic Motion of a Charge-Regulated Sphere Normal to a Plane. Journal of Colloid and Interface Science, 2001, 242, 121-126.	9.4	36
243	Electrophoretic mobility of a particle covered with an ion-penetrable membrane. Electrophoresis, 2001, 22, 1881-1886.	2.4	4
244	SUPERSATURATION, INDUCTION PERIOD, AND METASTABLE ZONE WIDTH OF CaCl2—Na2C03—HCl SYSTEM. Chemical Engineering Communications, 2001, 188, 243-263.	2.6	2
245	Electrophoretic mobility of concentrated spheres with a charge-regulated surface. Electrophoresis, 2000, 21, 475-480.	2.4	17
246	The role of cell density in the survival of cultured cerebellar granule neurons. Journal of Biomedical Materials Research Part B, 2000, 52, 748-753.	3.1	23
247	Electrokinetic flow in a planar slit covered by an ion-penetrable charged membrane. Electrophoresis, 2000, 21, 3541-3551.	2.4	11
248	Electrophoresis of concentrated spherical particles with a charge-regulated surface. Journal of Chemical Physics, 2000, 112, 6404-6410.	3.0	33
249	Electrical Interactions between Two Ion-Penetrable Charged Membranes:Â Effect of Sizes of Charged Species. Langmuir, 2000, 16, 6233-6239.	3.5	16
250	Current Efficiency of an Ion-Exchange Membrane:Â Effect of Piecewise Continuous Fixed Charge Distribution. Journal of Physical Chemistry B, 2000, 104, 3492-3495.	2.6	9
251	Sedimentation of a Nonconducting Sphere in a Spherical Cavity. Journal of Physical Chemistry B, 2000, 104, 6815-6820.	2.6	8
252	Sedimentation of Concentrated Charged Spheres at Low Surface Potentials. Langmuir, 2000, 16, 1650-1654.	3.5	5

#	Article	IF	CITATIONS
253	Sedimentation potential of a concentrated spherical colloidal suspension. Journal of Chemical Physics, 1999, 110, 11643-11651.	3.0	26
254	Modified Göuy–Chapman theory for an ion-penetrable charged membrane. Journal of Chemical Physics, 1999, 111, 4807-4816.	3.0	17
255	Electrical interaction energy between two charged entities. Journal of Chemical Physics, 1999, 110, 25-33.	3.0	7
256	Effect of pH on the electrophoretic mobility of a particle with a charge-regulated membrane in a general electrolyte solution. Colloids and Surfaces B: Biointerfaces, 1999, 13, 277-286.	5.0	11
257	Distribution of porous colloidal particles in an energy field. Chemical Physics, 1999, 242, 69-79.	1.9	3
258	Electrophoretic Mobility of a Concentrated Suspension of Spherical Particles. Journal of Colloid and Interface Science, 1999, 209, 240-246.	9.4	59
259	The induction period of the CaCl2–Na2CO3 system: Theory and experiment. Journal of Chemical Physics, 1999, 111, 2657-2664.	3.0	24
260	Stability of Colloidal Dispersions:Â Charge Regulation/Adsorption Model. Langmuir, 1999, 15, 5219-5226.	3.5	17
261	Double-Layer Properties of an Ion-Penetrable Charged Membrane:Â Effect of Sizes of Charged Species. Journal of Physical Chemistry B, 1999, 103, 9743-9748.	2.6	19
262	Electrical Properties of Charged Cylindrical and Spherical Surfaces in a General Electrolyte Solution. Langmuir, 1999, 15, 6244-6255.	3.5	5
263	Theoretical Analysis on a Multilayer Coextrusion Process for Preparing Gradient-Index Polymer Optical Fibers. Journal of Physical Chemistry B, 1999, 103, 7584-7590.	2.6	8
264	Gradient-Index Polymer Optical Fiber Preparation through a Co-Extrusion Process. Polymer Journal, 1999, 31, 233-237.	2.7	13
265	Electrophoretic Mobility of a Sphere in a Spherical Cavity. Journal of Colloid and Interface Science, 1998, 205, 65-76.	9.4	85
266	Electrical Interactions between Two Charged Spheroids in a Symmetric Electrolyte Solution. Langmuir, 1998, 14, 5383-5388.	3.5	2
267	Electrical Interaction of a System Containing Multiple Charged Rigid Spherical Particles. Journal of Physical Chemistry B, 1998, 102, 8492-8497.	2.6	1
268	Electrical Interaction of a System Containing Arbitrary Shaped, Ion-Penetrable Charged Particles. Journal of Physical Chemistry B, 1998, 102, 3892-3896.	2.6	4
269	Contribution of Electrostatic Interaction to the Dynamic Stability Coefficient for Coagulation-Flocculation Kinetics of Beta-Iron Oxyhydroxides in Polyelectrolyte Solutions Journal of Chemical Engineering of Japan, 1998, 31, 722-733.	0.6	5
270	Effect of Convective Boundary Layer on the Current Efficiency of a Membrane Bearing Nonuniformly Distributed Fixed Charges. Journal of Physical Chemistry B, 1997, 101, 8984-8989.	2.6	8

#	Article	lF	CITATIONS
271	Adsorption of a Charge-Regulated Particle to a Charged Surface. Langmuir, 1997, 13, 4372-4376.	3.5	14
272	Electrostatic Interactions between Two Identical Thin Disks of Arbitrary Orientation in an Electrolyte Solution. Langmuir, 1997, 13, 1810-1819.	3.5	10
273	Current Efficiency of Ion-Selective Membranes:Â Effects of Local Electroneutrality and Donnan Equilibrium. Journal of Physical Chemistry B, 1997, 101, 7928-7932.	2.6	11
274	Dynamic Interactions of Two Electrical Double Layers. Journal of Colloid and Interface Science, 1997, 195, 388-394.	9.4	32
275	Electrophoretic Mobility of a Spherical Particle in a Spherical Cavity. Journal of Colloid and Interface Science, 1997, 196, 316-320.	9.4	46
276	Critical coagulation concentration of counterions. AICHE Journal, 1996, 42, 3567-3570.	3.6	5
277	Electrophoretic Mobility of Biological Cells in Asymmetric Electrolyte Solutions. Journal of Theoretical Biology, 1996, 182, 137-145.	1.7	12
278	The Electrostatic Interaction Force between a Charge-Regulated Particle and a Rigid Surface. Journal of Colloid and Interface Science, 1996, 183, 194-198.	9.4	22
279	Transport of Ions through Cylindrical Ion-Selective Membranes. The Journal of Physical Chemistry, 1996, 100, 12503-12508.	2.9	11
280	Electrophoretic Mobility of a Particle Coated with a Charged Membrane: Effects of Fixed Charge and Dielectric Constant Distributions. Journal of Colloid and Interface Science, 1995, 172, 230-241.	9.4	23
281	Electrostatic interaction between a charge-regulated particle and a solid surface in electrolyte solution: effect of cationic electrolytes. Colloid and Polymer Science, 1994, 272, 946-954.	2.1	14
282	Approximate Analytical Expressions for the Properties of a Double Layer with Asymmetric Electrolytes: Ion-Penetrable Charged Membranes. Journal of Colloid and Interface Science, 1994, 166, 208-214.	9.4	20
283	Unsteady state, non-isothermal dissolution of a solid particle in liquid. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 1435.	1.7	3
284	Effect of Dielectric Constant on the Electrostatic Interactions between Two Ion-Penetrable Charged Membranes. Journal of Colloid and Interface Science, 1993, 160, 505-508.	9.4	6
285	Dissolution of solid particles in liquids: A reaction—diffusion model. Colloids and Surfaces, 1993, 69, 229-238.	0.9	6
286	Approximate analytical expressions for the properties of an electrical double layer with asymmetric electrolytes. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 1229.	1.7	13
287	Non-isothermal dissolution of a solid particle in liquid. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 1689.	1.7	4
288	NUMERICAL SIMULATION OF A MULTI-MICHAELIS-MENTEN MODEL THROUGH A FUZZY-RELATION MATRIX REPRESENTATION. Chemical Engineering Communications, 1991, 105, 221-230.	2.6	1

Jүн-Ping Hsu

#	Article	IF	CITATIONS
289	Dissolution of solid particles in liquids: A surface layer model. Colloids and Surfaces, 1991, 61, 35-47.	0.9	8
290	A kinetic analysis of the germination of fungal spores. Bulletin of Mathematical Biology, 1991, 53, 901-909.	1.9	0
291	Dissolution of solid particles in liquids. Journal of Colloid and Interface Science, 1991, 141, 60-66.	9.4	13
292	Dissolution of spherical particles in liquids. Journal of Colloid and Interface Science, 1991, 144, 597-599.	9.4	1
293	The effect of multivalent cations on adhesion time for cellular adhesion to solid surfaces. Journal of Theoretical Biology, 1990, 147, 509-516.	1.7	10
294	A STOCHASTIC ANALYSIS OF COKE DEPOSITION. Chemical Engineering Communications, 1987, 50, 69-79.	2.6	2
295	FLOC BREAKAGE ANALYSIS— A SIMULATION APPROACH. Chemical Engineering Communications, 1986, 44, 21-32.	2.6	3