gemma belli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4388238/publications.pdf Version: 2024-02-01

CEMMA BELL

#	Article	IF	CITATIONS
1	Post-Translational Modifications of PCNA: Guiding for the Best DNA Damage Tolerance Choice. Journal of Fungi (Basel, Switzerland), 2022, 8, 621.	3.5	5
2	Structural basis for the E3 ligase activity enhancement of yeast Nse2 by SUMO-interacting motifs. Nature Communications, 2021, 12, 7013.	12.8	15
3	Quantitative Operating Principles of Yeast Metabolism during Adaptation to Heat Stress. Cell Reports, 2018, 22, 2421-2430.	6.4	19
4	A scaffold protein that chaperones a cysteine-sulfenic acid in H2O2 signaling. Nature Chemical Biology, 2017, 13, 909-915.	8.0	49
5	The <i>Saccharomyces cerevisiae</i> response to stress caused by the herbicidal active substance alachlor requires the iron regulon transcription factor Aft1p. Environmental Microbiology, 2017, 19, 485-499.	3.8	7
6	Cth2 Protein Mediates Early Adaptation of Yeast Cells to Oxidative Stress Conditions. PLoS ONE, 2016, 11, e0148204.	2.5	8
7	Arabidopsis Glutaredoxin S17 and Its Partner, the Nuclear Factor Y Subunit C11/Negative Cofactor 2α, Contribute to Maintenance of the Shoot Apical Meristem under Long-Day Photoperiod. Plant Physiology, 2015, 167, 1643-1658.	4.8	78
8	Impaired mitochondrial Fe-S cluster biogenesis activates the DNA damage response through different signaling mediators. Journal of Cell Science, 2015, 128, 4653-65.	2.0	11
9	Transcriptomic Responses of Phanerochaete chrysosporium to Oak Acetonic Extracts: Focus on a New Glutathione Transferase. Applied and Environmental Microbiology, 2014, 80, 6316-6327.	3.1	34
10	The oxidative stress response in yeast cells involves changes in the stability of Aft1 regulon mRNAs. Molecular Microbiology, 2011, 81, 232-248.	2.5	33
11	Heat Shock Response in Yeast Involves Changes in Both Transcription Rates and mRNA Stabilities. PLoS ONE, 2011, 6, e17272.	2.5	82
12	Structural and Functional Diversity of Glutaredoxins in Yeast. Current Protein and Peptide Science, 2010, 11, 659-668.	1.4	37
13	Frataxin Depletion in Yeast Triggers Up-regulation of Iron Transport Systems before Affecting Iron-Sulfur Enzyme Activities. Journal of Biological Chemistry, 2010, 285, 41653-41664.	3.4	37
14	Redox control and oxidative stress in yeast cells. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 1217-1235.	2.4	367
15	Comprehensive Transcriptional Analysis of the Oxidative Response in Yeast. Journal of Biological Chemistry, 2008, 283, 17908-17918.	3.4	69
16	Prokaryotic and eukaryotic monothiol glutaredoxins are able to perform the functions of Grx5 in the biogenesis of Fe/S clusters in yeast mitochondria. FEBS Letters, 2006, 580, 2273-2280.	2.8	67
17	Glutaredoxins in fungi. Photosynthesis Research, 2006, 89, 127-140.	2.9	32
18	Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae. Journal of Cell Science, 2006, 119, 4554-4564.	2.0	181

GEMMA BELLI

#	Article	IF	CITATIONS
19	Nuclear Monothiol Glutaredoxins of Saccharomyces cerevisiae Can Function as Mitochondrial Glutaredoxins. Journal of Biological Chemistry, 2004, 279, 51923-51930.	3.4	91
20	Saccharomyces cerevisiae Glutaredoxin 5-deficient Cells Subjected to Continuous Oxidizing Conditions Are Affected in the Expression of Specific Sets of Genes. Journal of Biological Chemistry, 2004, 279, 12386-12395.	3.4	60
21	Evolution and Cellular Function of Monothiol Glutaredoxins: Involvement in Iron-Sulphur Cluster Assembly. Comparative and Functional Genomics, 2004, 5, 328-341.	2.0	47
22	Biochemical Characterization of Yeast Mitochondrial Grx5 Monothiol Glutaredoxin. Journal of Biological Chemistry, 2003, 278, 25745-25751.	3.4	115
23	Mitochondrial Hsp60, Resistance to Oxidative Stress, and the Labile Iron Pool Are Closely Connected in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2002, 277, 44531-44538.	3.4	124
24	Grx5 Is a Mitochondrial Glutaredoxin Required for the Activity of Iron/Sulfur Enzymes. Molecular Biology of the Cell, 2002, 13, 1109-1121.	2.1	430
25	Structure-Function Analysis of Yeast Grx5 Monothiol Glutaredoxin Defines Essential Amino Acids for the Function of the Protein. Journal of Biological Chemistry, 2002, 277, 37590-37596.	3.4	65
26	Osmotic stress causes a G1 cell cycle delay and downregulation of Cln3/Cdc28 activity in Saccharomyces cerevisiae. Molecular Microbiology, 2001, 39, 1022-1035.	2.5	86
27	An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast [published erratum appears in Nucleic Acids Res 1998 Apr 1;26(7):following 1855]. Nucleic Acids Research, 1998, 26, 942-947.	14.5	251