## David A Scheinberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4388057/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                       | lF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood, 2011, 118, 4817-4828.                         | 1.4  | 1,135     |
| 2  | Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies<br>prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biology, 2016, 17,<br>231.     | 8.8  | 746       |
| 3  | Acute myeloid leukaemia. Nature Reviews Disease Primers, 2016, 2, 16010.                                                                                                                                      | 30.5 | 277       |
| 4  | Conscripts of the infinite armada: systemic cancer therapy using nanomaterials. Nature Reviews<br>Clinical Oncology, 2010, 7, 266-276.                                                                        | 27.6 | 173       |
| 5  | Targeting the Intracellular WT1 Oncogene Product with a Therapeutic Human Antibody. Science<br>Translational Medicine, 2013, 5, 176ra33.                                                                      | 12.4 | 147       |
| 6  | Therapeutic bispecific T-cell engager antibody targeting the intracellular oncoprotein WT1. Nature<br>Biotechnology, 2015, 33, 1079-1086.                                                                     | 17.5 | 134       |
| 7  | Kinase Regulation of Human MHC Class I Molecule Expression on Cancer Cells. Cancer Immunology<br>Research, 2016, 4, 936-947.                                                                                  | 3.4  | 132       |
| 8  | Actinium-225 in Targeted Alpha-Particle Therapeutic Applications. Current Radiopharmaceuticals, 2011,<br>4, 306-320.                                                                                          | 0.8  | 126       |
| 9  | Nontranscriptional Role of Hif-1α in Activation of γ-Secretase and Notch Signaling in Breast Cancer. Cell<br>Reports, 2014, 8, 1077-1092.                                                                     | 6.4  | 122       |
| 10 | Selective Inhibition of HDAC3 Targets Synthetic Vulnerabilities and Activates Immune Surveillance in Lymphoma. Cancer Discovery, 2020, 10, 440-459.                                                           | 9.4  | 103       |
| 11 | Targeted fibrillar nanocarbon RNAi treatment of acute kidney injury. Science Translational Medicine, 2016, 8, 331ra39.                                                                                        | 12.4 | 88        |
| 12 | Rejection of immunogenic tumor clones is limited by clonal fraction. ELife, 2018, 7, .                                                                                                                        | 6.0  | 88        |
| 13 | Efficient 1-Step Radiolabeling of Monoclonal Antibodies to High Specific Activity with<br><sup>225</sup> Ac for α-Particle Radioimmunotherapy of Cancer. Journal of Nuclear Medicine, 2014, 55,<br>1492-1498. | 5.0  | 73        |
| 14 | Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nature<br>Nanotechnology, 2020, 15, 164-166.                                                                         | 31.5 | 69        |
| 15 | A therapeutic T cell receptor mimic antibody targets tumor-associated PRAME peptide/HLA-I antigens.<br>Journal of Clinical Investigation, 2017, 127, 2705-2718.                                               | 8.2  | 63        |
| 16 | Carbon nanotubes as vaccine scaffolds. Advanced Drug Delivery Reviews, 2013, 65, 2016-2022.                                                                                                                   | 13.7 | 62        |
| 17 | Familial Alzheimer Disease Presenilin-1 Mutations Alter the Active Site Conformation of Î <sup>3</sup> -secretase.<br>Journal of Biological Chemistry, 2012, 287, 17288-17296.                                | 3.4  | 58        |
| 18 | A TCR-mimic antibody to WT1 bypasses tyrosine kinase inhibitor resistance in human BCR-ABL+<br>leukemias. Blood, 2014, 123, 3296-3304.                                                                        | 1.4  | 52        |

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Immunogenicity and therapeutic targeting of a public neoantigen derived from mutated PIK3CA. Nature<br>Medicine, 2022, 28, 946-957.                                                                                              | 30.7 | 50        |
| 20 | Structure of a TCR-Mimic Antibody with Target Predicts Pharmacogenetics. Journal of Molecular Biology, 2016, 428, 194-205.                                                                                                       | 4.2  | 48        |
| 21 | A Randomized Phase II Trial of Adjuvant Galinpepimut-S, WT-1 Analogue Peptide Vaccine, After<br>Multimodality Therapy for Patients with Malignant Pleural Mesothelioma. Clinical Cancer Research,<br>2017, 23, 7483-7489.        | 7.0  | 48        |
| 22 | Dual inhibition of histone deacetylases and phosphoinositide 3-kinase enhances therapeutic activity against B cell lymphoma. Oncotarget, 2017, 8, 14017-14028.                                                                   | 1.8  | 48        |
| 23 | Therapeutic Efficacy of an Fc-Enhanced TCR-like Antibody to the Intracellular WT1 Oncoprotein.<br>Clinical Cancer Research, 2014, 20, 4036-4046.                                                                                 | 7.0  | 46        |
| 24 | Opportunities and challenges for TCR mimic antibodies in cancer therapy. Expert Opinion on<br>Biological Therapy, 2016, 16, 979-987.                                                                                             | 3.1  | 45        |
| 25 | Murine and humanized constructs of monoclonal antibody m195 (anti-cd33) for the therapy of acute myelogenous leukemia. Cancer, 1994, 73, 1049-1056.                                                                              | 4.1  | 43        |
| 26 | Phase I Trial of Targeted Alpha-Particle Therapy with Actinium-225 (225Ac)-Lintuzumab and Low-Dose<br>Cytarabine (LDAC) in Patients Age 60 or Older with Untreated Acute Myeloid Leukemia (AML). Blood,<br>2016, 128, 4050-4050. | 1.4  | 43        |
| 27 | A phase I study of anti-GD3 ganglioside monoclonal antibody R24 and recombinant human macrophage-colony stimulating factor in patients with metastatic melanoma. Cancer, 1995, 75, 2251-2257.                                    | 4.1  | 42        |
| 28 | Deconvoluting hepatic processing of carbon nanotubes. Nature Communications, 2016, 7, 12343.                                                                                                                                     | 12.8 | 42        |
| 29 | ALK and RET Inhibitors Promote HLA Class I Antigen Presentation and Unmask New Antigens within the Tumor Immunopeptidome. Cancer Immunology Research, 2019, 7, 1984-1997.                                                        | 3.4  | 39        |
| 30 | Engineering CAR-T cells to activate small-molecule drugs in situ. Nature Chemical Biology, 2022, 18, 216-225.                                                                                                                    | 8.0  | 39        |
| 31 | Adoptive transfer of unselected or leukemia-reactive T-cells in the treatment of relapse following allogeneic hematopoietic cell transplantation. Seminars in Immunology, 2010, 22, 162-172.                                     | 5.6  | 31        |
| 32 | Encapsulation of α-Particle–Emitting <sup>225</sup> Ac <sup>3+</sup> Ions Within Carbon Nanotubes.<br>Journal of Nuclear Medicine, 2015, 56, 897-900.                                                                            | 5.0  | 31        |
| 33 | Vascular Targeted Radioimmunotherapy for the Treatment of Glioblastoma. Journal of Nuclear<br>Medicine, 2016, 57, 1576-1582.                                                                                                     | 5.0  | 30        |
| 34 | Advances in the clinical translation of nanotechnology. Current Opinion in Biotechnology, 2017, 46, 66-73.                                                                                                                       | 6.6  | 30        |
| 35 | Phase I Trial of the Targeted Alpha-Particle Nano-Generator Actinium-225 (225Ac)-Lintuzumab<br>(Anti-CD33; HuM195) in Acute Myeloid Leukemia (AML). Blood, 2011, 118, 768-768.                                                   | 1.4  | 27        |
| 36 | Alpha radioimmunotherapy using <sup>225</sup> Ac-proteus-DOTA for solid tumors - safety at curative<br>doses. Theranostics, 2020, 10, 11359-11375.                                                                               | 10.0 | 26        |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Remodeling the Vascular Microenvironment of Glioblastoma with α-Particles. Journal of Nuclear<br>Medicine, 2016, 57, 1771-1777.                                                                                                          | 5.0 | 25        |
| 38 | Identification of the Targets of T-cell Receptor Therapeutic Agents and Cells by Use of a<br>High-Throughput Genetic Platform. Cancer Immunology Research, 2020, 8, 672-684.                                                             | 3.4 | 25        |
| 39 | An immunogenic WT1-derived peptide that induces T cell response in the context of HLA-A*02:01 and HLA-A*24:02 molecules. Oncolmmunology, 2017, 6, e1252895.                                                                              | 4.6 | 20        |
| 40 | Neutral glycosphingolipid expression in B-cell neoplasms. International Journal of Cancer, 1991, 49,<br>837-845.                                                                                                                         | 5.1 | 19        |
| 41 | Depleting T regulatory cells by targeting intracellular Foxp3 with a TCR mimic antibody.<br>Oncolmmunology, 2019, 8, e1570778.                                                                                                           | 4.6 | 19        |
| 42 | Empirical and Rational Design of T Cell Receptor-Based Immunotherapies. Frontiers in Immunology,<br>2020, 11, 585385.                                                                                                                    | 4.8 | 19        |
| 43 | Solving an MHC allele–specific bias in the reported immunopeptidome. JCI Insight, 2020, 5, .                                                                                                                                             | 5.0 | 19        |
| 44 | Carbon nanotubes exhibit fibrillar pharmacology in primates. PLoS ONE, 2017, 12, e0183902.                                                                                                                                               | 2.5 | 18        |
| 45 | Targeted Cellular Micropharmacies: Cells Engineered for Localized Drug Delivery. Cancers, 2020, 12, 2175.                                                                                                                                | 3.7 | 17        |
| 46 | Low-dose CDK4/6 inhibitors induce presentation of pathway specific MHC ligands as potential targets for cancer immunotherapy. Oncolmmunology, 2021, 10, 1916243.                                                                         | 4.6 | 15        |
| 47 | PET-based compartmental modeling of 124I-A33 antibody: quantitative characterization of patient-specific tumor targeting in colorectal cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 1700-1706.          | 6.4 | 13        |
| 48 | A Genomic Profile of Local Immunity in the Melanoma Microenvironment Following Treatment with α<br>Particle-Emitting Ultrasmall Silica Nanoparticles. Cancer Biotherapy and Radiopharmaceuticals, 2020,<br>35, 459-473.                  | 1.0 | 13        |
| 49 | Sequential Therapy with Cytarabine and Bismuth-213 (213Bi)-Labeled-HuM195 (Anti-CD33) for Acute<br>Myeloid Leukemia (AML) Blood, 2004, 104, 1790-1790.                                                                                   | 1.4 | 12        |
| 50 | Tumor-associated antigen PRAME exhibits dualistic functions that are targetable in diffuse large B<br>cell lymphoma. Journal of Clinical Investigation, 2022, 132, .                                                                     | 8.2 | 12        |
| 51 | Incorporation of bacterial immunoevasins to protect cell therapies from host antibody-mediated immune rejection. Molecular Therapy, 2021, 29, 3398-3409.                                                                                 | 8.2 | 10        |
| 52 | A TCR mimic CAR T cell specific for NDC80 is broadly reactive with solid tumors and hematologic malignancies. Blood, 2022, 140, 861-874.                                                                                                 | 1.4 | 10        |
| 53 | Fibrillar pharmacology of functionalized nanocellulose. Scientific Reports, 2021, 11, 157.                                                                                                                                               | 3.3 | 8         |
| 54 | Phase I Trial of Targeted Alpha-Particle Immunotherapy with Actinium-225 (225Ac)-Lintuzumab<br>(Anti-CD33) and Low-Dose Cytarabine (LDAC) in Older Patients with Untreated Acute Myeloid Leukemia<br>(AML). Blood, 2015, 126, 3794-3794. | 1.4 | 8         |

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A TCR mimic monoclonal antibody reactive with the "public―phospho-neoantigen pIRS2/HLA-A*02:01<br>complex. JCI Insight, 2022, 7, .                                                           | 5.0 | 8         |
| 56 | CAR Chase: Where Do Engineered Cells Go in Humans?. Frontiers in Oncology, 2020, 10, 577773.                                                                                                 | 2.8 | 7         |
| 57 | Impact of tumor heterogeneity and microenvironment in identifying neoantigens in a patient with ovarian cancer. Cancer Immunology, Immunotherapy, 2021, 70, 1189-1202.                       | 4.2 | 7         |
| 58 | Fibrillous Carbon Nanotube: An Unexpected Journey. Critical Reviews in Oncogenesis, 2014, 19, 261-268.                                                                                       | 0.4 | 7         |
| 59 | Unmasking the suppressed immunopeptidome of EZH2-mutated diffuse large B-cell lymphomas through combination drug treatment. Blood Advances, 2022, 6, 4107-4121.                              | 5.2 | 7         |
| 60 | Engineered Cells as a Test Platform for Radiohaptens in Pretargeted Imaging and Radioimmunotherapy<br>Applications. Bioconjugate Chemistry, 2021, 32, 649-654.                               | 3.6 | 6         |
| 61 | A Therapeutic TCR Mimic Monoclonal Antibody for Intracellular PRAME Protein in Leukemias. Blood, 2015, 126, 2527-2527.                                                                       | 1.4 | 5         |
| 62 | Hematology: The Biological Therapy of Acute and Chronic Leukemia. Cancer Investigation, 1997, 15, 342-352.                                                                                   | 1.3 | 4         |
| 63 | Mechanisms of leukemia resistance to antibody dependent cellular cytotoxicity. Oncolmmunology, 2016, 5, e1211221.                                                                            | 4.6 | 4         |
| 64 | A TCR mimic monoclonal antibody for the HPV-16 E7-epitope p11-19/HLA-A*02:01 complex. PLoS ONE, 2022, 17, e0265534.                                                                          | 2.5 | 4         |
| 65 | The effects of amine-modified single-walled carbon nanotubes on the mouse microbiota. International<br>Journal of Nanomedicine, 2018, Volume 13, 5275-5286.                                  | 6.7 | 2         |
| 66 | An input-controlled model system for identification of MHC bound peptides enabling laboratory comparisons of immunopeptidome experiments. Journal of Proteomics, 2020, 228, 103921.          | 2.4 | 2         |
| 67 | Epigenetic Drug Treatment Induces Presentation of New Class of Non-Exonic, Cryptic Neoantigens in<br>Acute Myeloid Leukemia Cells. Blood, 2018, 132, 2717-2717.                              | 1.4 | 2         |
| 68 | Photo-Reactive and Non-Natural Amino Acid Epitopes of Human WT1 Enhance Immunogenicity and<br>Allow Kinetic Study of Antigen Processing Blood, 2007, 110, 2311-2311.                         | 1.4 | 1         |
| 69 | Phase II Trial of WT1 Analog Peptide Vaccine in Patients with Acute Myeloid Leukemia (AML) in Complete<br>Remission (CR). Blood, 2012, 120, 3624-3624.                                       | 1.4 | 1         |
| 70 | Aerobic Glycolysis Predicts Outcome in Early Chronic Lymphocytic Leukemia Blood, 2012, 120,<br>2482-2482.                                                                                    | 1.4 | 1         |
| 71 | A TCR Mimic Antibody-Directed CAR T Cell Specific for Intracellular NDC80 Is Broadly Cancer Reactive and Displays High Activity Against Hematological Malignancies. Blood, 2020, 136, 20-21. | 1.4 | 1         |
| 72 | Generating Human Immune Responses to Mutations in Bcr-Abl Kinase Selected by Imatinib Blood, 2004,<br>104, 4689-4689.                                                                        | 1.4 | 0         |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Remodeling Specific Immunity by Use of MHC-Tetramers Distinguishes Graft-Versus-Tumor Activity from Graft-Versus-Host-Disease Blood, 2005, 106, 1300-1300.                                                                          | 1.4 | 0         |
| 74 | Generation of Specific Human CD8+ T Cell Responses to the Myeloproliferative Disorder Associated<br>V617F Mutated JAK2 Kinase by Use of Analog Peptide Vaccine Candidates Blood, 2005, 106, 3512-3512.                              | 1.4 | 0         |
| 75 | CD4+ Peptide Epitopes from the WT1 Oncoprotein Stimulate CD4+ and CD8+ T Cells That Recognize and<br>Kill Leukemia and Solid Tumor Cells Blood, 2006, 108, 3706-3706.                                                               | 1.4 | 0         |
| 76 | Multivalent DNA Aptamer-Based Therapeutic Agents for Lymphoma and Leukemia Blood, 2009, 114, 2711-2711.                                                                                                                             | 1.4 | 0         |
| 77 | Elevated Mitochondrial Membrane Potential in CLL Cells Is Associated with a more aggressive Natural<br>History. Blood, 2011, 118, 1765-1765.                                                                                        | 1.4 | 0         |
| 78 | A Cytotoxic Human Monoclonal Antibody Recognizing Cell Surface WT1 Peptide/HLA-A2 Complexes.<br>Blood, 2011, 118, 1677-1677.                                                                                                        | 1.4 | 0         |
| 79 | Therapeutic Efficacy and Cure Of Sensitive and T315I Pan-Resistant Human Ph+ Leukemia In Mice Using a<br>TCR-Like Antibody To WT1/HLA-A0201 Alone, Or In Combination With Tyrosine Kinase Inhibitors. Blood,<br>2013, 122, 855-855. | 1.4 | 0         |
| 80 | Dual Inhibition of Histone Deacetylases and Phosphoinositide 3-Kinase Enhances Therapeutic Activity<br>Against B Cell Lymphoma. Blood, 2016, 128, 293-293.                                                                          | 1.4 | 0         |
| 81 | Immune surveillance of leukemia?. Haematologica, 2005, 90, 1297B.                                                                                                                                                                   | 3.5 | 0         |