Daniel G Panaccione

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4387216/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Contribution of a novel gene to lysergic acid amide synthesis in Metarhizium brunneum. BMC Research Notes, 2022, 15, 183.	1.4	4
2	A Baeyer-Villiger Monooxygenase Gene Involved in the Synthesis of Lysergic Acid Amides Affects the Interaction of the Fungus Metarhizium brunneum with Insects. Applied and Environmental Microbiology, 2021, 87, e0074821.	3.1	7
3	Independent Evolution of a Lysergic Acid Amide in Aspergillus Species. Applied and Environmental Microbiology, 2021, 87, e0180121.	3.1	6
4	Diversification of ergot alkaloids and heritable fungal symbionts in morning glories. Communications Biology, 2021, 4, 1362.	4.4	12
5	Genetic Reprogramming of the Ergot Alkaloid Pathway of Metarhizium brunneum. Applied and Environmental Microbiology, 2020, 86, .	3.1	15
6	Several Metarhizium Species Produce Ergot Alkaloids in a Condition-Specific Manner. Applied and Environmental Microbiology, 2020, 86, .	3.1	23
7	Endophytes matter: Variation of dung beetle performance across different endophyte-infected tall fescue cultivars. Applied Soil Ecology, 2020, 152, 103561.	4.3	5
8	Diversity and function of fungi associated with the fungivorous millipede, Brachycybe lecontii. Fungal Ecology, 2019, 41, 187-197.	1.6	17
9	Biodiversity of Convolvulaceous species that contain ergot alkaloids, indole diterpene alkaloids, and swainsonine. Biochemical Systematics and Ecology, 2019, 86, 103921.	1.3	10
10	Decreased Root-Knot Nematode Gall Formation in Roots of the Morning Glory Ipomoea tricolor Symbiotic with Ergot Alkaloid-Producing Fungal Periglandula Sp Journal of Chemical Ecology, 2019, 45, 879-887.	1.8	8
11	Psychoactive plant- and mushroom-associated alkaloids from two behavior modifying cicada pathogens. Fungal Ecology, 2019, 41, 147-164.	1.6	55
12	Molecular identification and characterization of endophytes from uncultivated barley. Mycologia, 2018, 110, 453-472.	1.9	7
13	Ergot Alkaloid Synthesis Capacity of Penicillium camemberti. Applied and Environmental Microbiology, 2018, 84, .	3.1	10
14	Biological activity of Claviceps gigantea in juvenile New Zealand rabbits. Mycotoxin Research, 2018, 34, 297-305.	2.3	0
15	Ergot Alkaloids of the Family Clavicipitaceae. Phytopathology, 2017, 107, 504-518.	2.2	76
16	Biosynthesis of the Pharmaceutically Important Fungal Ergot Alkaloid Dihydrolysergic Acid Requires a Specialized Allele of <i>cloA</i> . Applied and Environmental Microbiology, 2017, 83, .	3.1	14
17	Ergot alkaloids contribute to virulence in an insect model of invasive aspergillosis. Scientific Reports, 2017, 7, 8930.	3.3	36
18	Ergot Alkaloid Biosynthesis in the Maize (<i>Zea mays</i>) Ergot Fungus <i>Claviceps gigantea</i> . Journal of Agricultural and Food Chemistry, 2017, 65, 10703-10710.	5.2	9

#	Article	IF	CITATIONS
19	Toxin-producing <i>Epichloë bromicola</i> strains symbiotic with the forage grass <i>Elymus dahuricus</i> in China. Mycologia, 2017, 109, 847-859.	1.9	12
20	Chromosome-End Knockoff Strategy to Reshape Alkaloid Profiles of a Fungal Endophyte. G3: Genes, Genomes, Genetics, 2016, 6, 2601-2610.	1.8	19
21	Modulation of Ergot Alkaloids in a Grass–Endophyte Symbiosis by Alteration of mRNA Concentrations of an Ergot Alkaloid Synthesis Gene. Journal of Agricultural and Food Chemistry, 2016, 64, 4982-4989.	5.2	8
22	Functional analysis of the gene controlling hydroxylation of festuclavine in the ergot alkaloid pathway of Neosartorya fumigata. Current Genetics, 2016, 62, 853-860.	1.7	20
23	The role of fungi and invertebrates in litter decomposition in mitigated and reference wetlands. Limnologica, 2015, 54, 23-32.	1.5	18
24	Genetics, Genomics and Evolution of Ergot Alkaloid Diversity. Toxins, 2015, 7, 1273-1302.	3.4	83
25	Diversification of Ergot Alkaloids in Natural and Modified Fungi. Toxins, 2015, 7, 201-218.	3.4	49
26	Phylogenetic and chemotypic diversity of <i>Periglandula</i> species in eight new morning glory hosts (Convolvulaceae). Mycologia, 2015, 107, 667-678.	1.9	25
27	Identification and Structural Elucidation of Ergotryptamine, a New Ergot Alkaloid Produced by Genetically Modified <i>Aspergillus nidulans</i> and Natural Isolates of <i>Epichloë</i> Species. Journal of Agricultural and Food Chemistry, 2015, 63, 61-67.	5.2	18
28	Bioactive alkaloids in vertically transmitted fungal endophytes. Functional Ecology, 2014, 28, 299-314.	3.6	154
29	Accumulation of Ergot Alkaloids During Conidiophore Development in Aspergillus fumigatus. Current Microbiology, 2014, 68, 1-5.	2.2	17
30	Potential for Industrial Application of Microbes in Symbioses that Influence Plant Productivity and Sustainability in Agricultural, Natural, or Restored Ecosystems. Industrial Biotechnology, 2014, 10, 347-353.	0.8	1
31	Heterologous Expression of Lysergic Acid and Novel Ergot Alkaloids in Aspergillus fumigatus. Applied and Environmental Microbiology, 2014, 80, 6465-6472.	3.1	37
32	Differential Allocation of Seed-Borne Ergot Alkaloids During Early Ontogeny of Morning Glories (Convolvulaceae). Journal of Chemical Ecology, 2013, 39, 919-930.	1.8	26
33	Currencies of Mutualisms: Sources of Alkaloid Genes in Vertically Transmitted Epichloae. Toxins, 2013, 5, 1064-1088.	3.4	109
34	Plant-Symbiotic Fungi as Chemical Engineers: Multi-Genome Analysis of the Clavicipitaceae Reveals Dynamics of Alkaloid Loci. PLoS Genetics, 2013, 9, e1003323.	3.5	344
35	Partial Reconstruction of the Ergot Alkaloid Pathway by Heterologous Gene Expression in Aspergillus nidulans. Toxins, 2013, 5, 445-455.	3.4	46
36	Analysis and Modification of Ergot Alkaloid Profiles in Fungi. Methods in Enzymology, 2012, 515, 267-290.	1.0	42

#	Article	IF	CITATIONS
37	Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genetics, 2012, 44, 1060-1065.	21.4	840
38	Chemotypic and genotypic diversity in the ergot alkaloid pathway of Aspergillus fumigatus. Mycologia, 2012, 104, 804-812.	1.9	18
39	Ergot Alkaloids. , 2011, , 195-214.		1
40	Ergot cluster-encoded catalase is required for synthesis of chanoclavine-I in Aspergillus fumigatus. Current Genetics, 2011, 57, 201-211.	1.7	48
41	An Old Yellow Enzyme Gene Controls the Branch Point between <i>Aspergillus fumigatus</i> and <i>Claviceps purpurea</i> Ergot Alkaloid Pathways. Applied and Environmental Microbiology, 2010, 76, 3898-3903.	3.1	67
42	Controlling a Structural Branch Point in Ergot Alkaloid Biosynthesis. Journal of the American Chemical Society, 2010, 132, 12835-12837.	13.7	56
43	A Role for Old Yellow Enzyme in Ergot Alkaloid Biosynthesis. Journal of the American Chemical Society, 2010, 132, 1776-1777.	13.7	54
44	Contribution of ergot alkaloids to suppression of a grassâ€feeding caterpillar assessed with gene knockout endophytes in perennial ryegrass. Entomologia Experimentalis Et Applicata, 2008, 126, 138-147.	1.4	67
45	Association of ergot alkaloids with conidiation in Aspergillus fumigatus. Mycologia, 2007, 99, 804-811.	1.9	45
46	Association of ergot alkaloids with conidiation in <i>Aspergillus fumigatus</i> . Mycologia, 2007, 99, 804-811.	1.9	48
47	Chapter 2 Ergot Alkaloids – Biology and Molecular Biology. The Alkaloids Chemistry and Biology, 2006, 63, 45-86.	2.0	184
48	Effects of Ergot Alkaloids on Food Preference and Satiety in Rabbits, As Assessed with Gene-Knockout Endophytes in Perennial Ryegrass (Lolium perenne). Journal of Agricultural and Food Chemistry, 2006, 54, 4582-4587.	5.2	76
49	Pathways to Diverse Ergot Alkaloid Profiles in Fungi. Recent Advances in Phytochemistry, 2006, , 23-52.	0.5	3
50	Ergot alkaloids are not essential for endophytic fungus-associated population suppression of the lesion nematode, Pratylenchus scribneri, on perennial ryegrass. Nematology, 2006, 8, 583-590.	0.6	37
51	Origins and significance of ergot alkaloid diversity in fungi. FEMS Microbiology Letters, 2005, 251, 9-17.	1.8	89
52	The ergot alkaloid gene cluster in Claviceps purpurea: Extension of the cluster sequence and intra species evolution. Phytochemistry, 2005, 66, 1312-1320.	2.9	122
53	Abundant Respirable Ergot Alkaloids from the Common Airborne Fungus Aspergillus fumigatus. Applied and Environmental Microbiology, 2005, 71, 3106-3111.	3.1	85
54	Structural analysis of a peptide synthetase gene required for ergopeptine production in the endophytic fungusNeotyphodium lolii. DNA Sequence, 2005, 16, 379-385.	0.7	14

#	Article	IF	CITATIONS
55	An Ergot Alkaloid Biosynthesis Gene and Clustered Hypothetical Genes from Aspergillus fumigatus. Applied and Environmental Microbiology, 2005, 71, 3112-3118.	3.1	103
56	The determinant step in ergot alkaloid biosynthesis by an endophyte of perennial ryegrass. Fungal Genetics and Biology, 2004, 41, 189-198.	2.1	105
57	Biochemical Outcome of Blocking the Ergot Alkaloid Pathway of a Grass Endophyte. Journal of Agricultural and Food Chemistry, 2003, 51, 6429-6437.	5.2	53
58	Identification of differentially expressed genes in the mutualistic association of tall fescue with Neotyphodium coenophialum. Physiological and Molecular Plant Pathology, 2003, 63, 305-317.	2.5	69
59	Characterization of dilution enrichment cultures obtained from size-fractionated soil bacteria by BIOLOG® community-level physiological profiles and restriction analysis of 16S rRNA genes. Soil Biology and Biochemistry, 2001, 33, 1555-1562.	8.8	25
60	Diversity of Cenococcum geophilum isolates from serpentine and non-serpentine soils. Mycologia, 2001, 93, 645-652.	1.9	42
61	Elimination of ergovaline from a grass-Neotyphodium endophyte symbiosis by genetic modification of the endophyte. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 12820-12825.	7.1	164
62	Diversity of Cenococcum geophilum Isolates from Serpentine and Non-Serpentine Soils. Mycologia, 2001, 93, 645.	1.9	39
63	Significance of fungal peptide secondary metabolites in the agri-food industry. Applied Mycology and Biotechnology, 2001, 1, 115-143.	0.3	2
64	Organic acid e×udation by <i>Laccaria bicolor</i> and <i>Pisolithus tinctorius</i> e×posed to aluminum in vitro. Canadian Journal of Forest Research, 2001, 31, 703-710.	1.7	17
65	Presence of peptide synthetase gene transcripts and accumulation of ergopeptines in Claviceps purpurea and Neotyphodium coenophialum. Canadian Journal of Microbiology, 1998, 44, 80-86.	1.7	22
66	Presence of peptide synthetase gene transcripts and accumulation of ergopeptines in <i>Claviceps purpurea</i> and <i>Neotyphodium coenophialum</i> . Canadian Journal of Microbiology, 1998, 44, 80-86.	1.7	2
67	Metalaxyl stimulation of growth of isolates of <i>Phytophthora infestans</i> . Mycologia, 1997, 89, 289-292.	1.9	25
68	Transposon-like sequences at the TOX2 locus of the plant-pathogenic fungus Cochliobolus carbonum. Gene, 1996, 176, 103-109.	2.2	35
69	Multiple families of peptide synthetase genes from ergopeptine-producing fungi. Mycological Research, 1996, 100, 429-436.	2.5	30
70	Identification of peptide synthetase-encoding genes from filamentous fungi producing host-selective phytotoxins or analogs. Gene, 1995, 165, 207-211.	2.2	49
71	The fungal genus Cochliobolus and toxin-mediated plant disease. Trends in Microbiology, 1993, 1, 14-20.	7.7	17
72	Host-Selective Toxins and Disease Specificity: Perspectives and Progress. Annual Review of Phytopathology, 1993, 31, 275-303.	7.8	80

#	Article	IF	CITATIONS
73	The PYR1 gene of the plant pathogenic fungus Colletotrichum graminicola: selection by intraspecific complementation and sequence analysis. Molecular Genetics and Genomics, 1992, 235, 74-80.	2.4	18
74	Gene expression associated with light-induced conidiation in Colletotrichum graminicola. Canadian Journal of Microbiology, 1991, 37, 165-167.	1.7	3
75	Endopolygalacturonase Is Not Required for Pathogenicity of Cochliobolus carbonum on Maize. Plant Cell, 1990, 2, 1191.	6.6	53
76	Characterization of two divergent β-tubulin genes from Colletotrichum graminicola. Gene, 1990, 86, 163-170.	2.2	61
77	Conidial Dimorphism in Colletotrichum graminicola. Mycologia, 1989, 81, 876.	1.9	21
78	Colletotrichum graminicolaTransformed with Homologous and Heterologous Benomyl-Resistance Genes Retains Expected Pathogenicity to Corn. Molecular Plant-Microbe Interactions, 1988, 1, 113.	2.6	53