Daniel G Panaccione

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4387216/publications.pdf

Version: 2024-02-01

78 papers

4,285 citations

35 h-index 110387 64 g-index

81 all docs

81 docs citations

81 times ranked 3430 citing authors

#	Article	IF	CITATIONS
1	Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genetics, 2012, 44, 1060-1065.	21.4	840
2	Plant-Symbiotic Fungi as Chemical Engineers: Multi-Genome Analysis of the Clavicipitaceae Reveals Dynamics of Alkaloid Loci. PLoS Genetics, 2013, 9, e1003323.	3.5	344
3	Chapter 2 Ergot Alkaloids – Biology and Molecular Biology. The Alkaloids Chemistry and Biology, 2006, 63, 45-86.	2.0	184
4	Elimination of ergovaline from a grass-Neotyphodium endophyte symbiosis by genetic modification of the endophyte. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 12820-12825.	7.1	164
5	Bioactive alkaloids in vertically transmitted fungal endophytes. Functional Ecology, 2014, 28, 299-314.	3.6	154
6	The ergot alkaloid gene cluster in Claviceps purpurea: Extension of the cluster sequence and intra species evolution. Phytochemistry, 2005, 66, 1312-1320.	2.9	122
7	Currencies of Mutualisms: Sources of Alkaloid Genes in Vertically Transmitted Epichloae. Toxins, 2013, 5, 1064-1088.	3.4	109
8	The determinant step in ergot alkaloid biosynthesis by an endophyte of perennial ryegrass. Fungal Genetics and Biology, 2004, 41, 189-198.	2.1	105
9	An Ergot Alkaloid Biosynthesis Gene and Clustered Hypothetical Genes from Aspergillus fumigatus. Applied and Environmental Microbiology, 2005, 71, 3112-3118.	3.1	103
10	Origins and significance of ergot alkaloid diversity in fungi. FEMS Microbiology Letters, 2005, 251, 9-17.	1.8	89
11	Abundant Respirable Ergot Alkaloids from the Common Airborne Fungus Aspergillus fumigatus. Applied and Environmental Microbiology, 2005, 71, 3106-3111.	3.1	85
12	Genetics, Genomics and Evolution of Ergot Alkaloid Diversity. Toxins, 2015, 7, 1273-1302.	3.4	83
13	Host-Selective Toxins and Disease Specificity: Perspectives and Progress. Annual Review of Phytopathology, 1993, 31, 275-303.	7.8	80
14	Effects of Ergot Alkaloids on Food Preference and Satiety in Rabbits, As Assessed with Gene-Knockout Endophytes in Perennial Ryegrass (Lolium perenne). Journal of Agricultural and Food Chemistry, 2006, 54, 4582-4587.	5 . 2	76
15	Ergot Alkaloids of the Family Clavicipitaceae. Phytopathology, 2017, 107, 504-518.	2.2	76
16	Identification of differentially expressed genes in the mutualistic association of tall fescue with Neotyphodium coenophialum. Physiological and Molecular Plant Pathology, 2003, 63, 305-317.	2.5	69
17	Contribution of ergot alkaloids to suppression of a grassâ€feeding caterpillar assessed with gene knockout endophytes in perennial ryegrass. Entomologia Experimentalis Et Applicata, 2008, 126, 138-147.	1.4	67
18	An Old Yellow Enzyme Gene Controls the Branch Point between <i>Aspergillus fumigatus</i> and <i>Claviceps purpurea</i> Ergot Alkaloid Pathways. Applied and Environmental Microbiology, 2010, 76, 3898-3903.	3.1	67

#	Article	IF	CITATIONS
19	Characterization of two divergent \hat{l}^2 -tubulin genes from Colletotrichum graminicola. Gene, 1990, 86, 163-170.	2.2	61
20	Controlling a Structural Branch Point in Ergot Alkaloid Biosynthesis. Journal of the American Chemical Society, 2010, 132, 12835-12837.	13.7	56
21	Psychoactive plant- and mushroom-associated alkaloids from two behavior modifying cicada pathogens. Fungal Ecology, 2019, 41, 147-164.	1.6	55
22	A Role for Old Yellow Enzyme in Ergot Alkaloid Biosynthesis. Journal of the American Chemical Society, 2010, 132, 1776-1777.	13.7	54
23	Endopolygalacturonase Is Not Required for Pathogenicity of Cochliobolus carbonum on Maize. Plant Cell, 1990, 2, 1191.	6.6	53
24	Biochemical Outcome of Blocking the Ergot Alkaloid Pathway of a Grass Endophyte. Journal of Agricultural and Food Chemistry, 2003, 51, 6429-6437.	5.2	53
25	Colletotrichum graminicolaTransformed with Homologous and Heterologous Benomyl-Resistance Genes Retains Expected Pathogenicity to Corn. Molecular Plant-Microbe Interactions, 1988, 1, 113.	2.6	53
26	Identification of peptide synthetase-encoding genes from filamentous fungi producing host-selective phytotoxins or analogs. Gene, 1995, 165, 207-211.	2.2	49
27	Diversification of Ergot Alkaloids in Natural and Modified Fungi. Toxins, 2015, 7, 201-218.	3.4	49
28	Association of ergot alkaloids with conidiation in <i>Aspergillus fumigatus</i> . Mycologia, 2007, 99, 804-811.	1.9	48
29	Ergot cluster-encoded catalase is required for synthesis of chanoclavine-I in Aspergillus fumigatus. Current Genetics, 2011, 57, 201-211.	1.7	48
30	Partial Reconstruction of the Ergot Alkaloid Pathway by Heterologous Gene Expression in Aspergillus nidulans. Toxins, 2013, 5, 445-455.	3.4	46
31	Association of ergot alkaloids with conidiation in Aspergillus fumigatus. Mycologia, 2007, 99, 804-811.	1.9	45
32	Diversity of Cenococcum geophilum isolates from serpentine and non-serpentine soils. Mycologia, 2001, 93, 645-652.	1.9	42
33	Analysis and Modification of Ergot Alkaloid Profiles in Fungi. Methods in Enzymology, 2012, 515, 267-290.	1.0	42
34	Diversity of Cenococcum geophilum Isolates from Serpentine and Non-Serpentine Soils. Mycologia, 2001, 93, 645.	1.9	39
35	Ergot alkaloids are not essential for endophytic fungus-associated population suppression of the lesion nematode, Pratylenchus scribneri, on perennial ryegrass. Nematology, 2006, 8, 583-590.	0.6	37
36	Heterologous Expression of Lysergic Acid and Novel Ergot Alkaloids in Aspergillus fumigatus. Applied and Environmental Microbiology, 2014, 80, 6465-6472.	3.1	37

#	Article	IF	CITATIONS
37	Ergot alkaloids contribute to virulence in an insect model of invasive aspergillosis. Scientific Reports, 2017, 7, 8930.	3.3	36
38	Transposon-like sequences at the TOX2 locus of the plant-pathogenic fungus Cochliobolus carbonum. Gene, 1996, 176, 103-109.	2.2	35
39	Multiple families of peptide synthetase genes from ergopeptine-producing fungi. Mycological Research, 1996, 100, 429-436.	2.5	30
40	Differential Allocation of Seed-Borne Ergot Alkaloids During Early Ontogeny of Morning Glories (Convolvulaceae). Journal of Chemical Ecology, 2013, 39, 919-930.	1.8	26
41	Metalaxyl stimulation of growth of isolates of <i>Phytophthora infestans</i> . Mycologia, 1997, 89, 289-292.	1.9	25
42	Characterization of dilution enrichment cultures obtained from size-fractionated soil bacteria by BIOLOG® community-level physiological profiles and restriction analysis of 16S rRNA genes. Soil Biology and Biochemistry, 2001, 33, 1555-1562.	8.8	25
43	Phylogenetic and chemotypic diversity of <i>Periglandula</i> species in eight new morning glory hosts (Convolvulaceae). Mycologia, 2015, 107, 667-678.	1.9	25
44	Several Metarhizium Species Produce Ergot Alkaloids in a Condition-Specific Manner. Applied and Environmental Microbiology, 2020, 86, .	3.1	23
45	Presence of peptide synthetase gene transcripts and accumulation of ergopeptines in Claviceps purpurea and Neotyphodium coenophialum. Canadian Journal of Microbiology, 1998, 44, 80-86.	1.7	22
46	Conidial Dimorphism in Colletotrichum graminicola. Mycologia, 1989, 81, 876.	1.9	21
47	Functional analysis of the gene controlling hydroxylation of festuclavine in the ergot alkaloid pathway of Neosartorya fumigata. Current Genetics, 2016, 62, 853-860.	1.7	20
48	Chromosome-End Knockoff Strategy to Reshape Alkaloid Profiles of a Fungal Endophyte. G3: Genes, Genomes, Genetics, 2016, 6, 2601-2610.	1.8	19
49	The PYR1 gene of the plant pathogenic fungus Colletotrichum graminicola: selection by intraspecific complementation and sequence analysis. Molecular Genetics and Genomics, 1992, 235, 74-80.	2.4	18
50	Chemotypic and genotypic diversity in the ergot alkaloid pathway of Aspergillus fumigatus. Mycologia, 2012, 104, 804-812.	1.9	18
51	The role of fungi and invertebrates in litter decomposition in mitigated and reference wetlands. Limnologica, 2015, 54, 23-32.	1.5	18
52	Identification and Structural Elucidation of Ergotryptamine, a New Ergot Alkaloid Produced by Genetically Modified <i>Aspergillus nidulans</i> and Natural Isolates of <i>Epichloë</i> Species. Journal of Agricultural and Food Chemistry, 2015, 63, 61-67.	5.2	18
53	The fungal genus Cochliobolus and toxin-mediated plant disease. Trends in Microbiology, 1993, 1, 14-20.	7.7	17
54	Accumulation of Ergot Alkaloids During Conidiophore Development in Aspergillus fumigatus. Current Microbiology, 2014, 68, 1-5.	2.2	17

#	Article	IF	CITATIONS
55	Diversity and function of fungi associated with the fungivorous millipede, Brachycybe lecontii. Fungal Ecology, 2019, 41, 187-197.	1.6	17
56	Organic acid e \tilde{A} —udation by <i>Laccaria bicolor</i> and <i>Pisolithus tinctorius</i> e \tilde{A} —posed to aluminum in vitro. Canadian Journal of Forest Research, 2001, 31, 703-710.	1.7	17
57	Genetic Reprogramming of the Ergot Alkaloid Pathway of Metarhizium brunneum. Applied and Environmental Microbiology, 2020, 86, .	3.1	15
58	Structural analysis of a peptide synthetase gene required for ergopeptine production in the endophytic fungusNeotyphodium lolii. DNA Sequence, 2005, 16, 379-385.	0.7	14
59	Biosynthesis of the Pharmaceutically Important Fungal Ergot Alkaloid Dihydrolysergic Acid Requires a Specialized Allele of <i>cloA</i> . Applied and Environmental Microbiology, 2017, 83, .	3.1	14
60	Toxin-producing <i>Epichloë bromicola</i> strains symbiotic with the forage grass <i>Elymus dahuricus</i> in China. Mycologia, 2017, 109, 847-859.	1.9	12
61	Diversification of ergot alkaloids and heritable fungal symbionts in morning glories. Communications Biology, 2021, 4, 1362.	4.4	12
62	Ergot Alkaloid Synthesis Capacity of Penicillium camemberti. Applied and Environmental Microbiology, 2018, 84, .	3.1	10
63	Biodiversity of Convolvulaceous species that contain ergot alkaloids, indole diterpene alkaloids, and swainsonine. Biochemical Systematics and Ecology, 2019, 86, 103921.	1.3	10
64	Ergot Alkaloid Biosynthesis in the Maize (<i>Zea mays</i>) Ergot Fungus <i>Claviceps gigantea</i> Journal of Agricultural and Food Chemistry, 2017, 65, 10703-10710.	5.2	9
65	Modulation of Ergot Alkaloids in a Grass–Endophyte Symbiosis by Alteration of mRNA Concentrations of an Ergot Alkaloid Synthesis Gene. Journal of Agricultural and Food Chemistry, 2016, 64, 4982-4989.	5.2	8
66	Decreased Root-Knot Nematode Gall Formation in Roots of the Morning Glory Ipomoea tricolor Symbiotic with Ergot Alkaloid-Producing Fungal Periglandula Sp Journal of Chemical Ecology, 2019, 45, 879-887.	1.8	8
67	Molecular identification and characterization of endophytes from uncultivated barley. Mycologia, 2018, 110, 453-472.	1.9	7
68	A Baeyer-Villiger Monooxygenase Gene Involved in the Synthesis of Lysergic Acid Amides Affects the Interaction of the Fungus Metarhizium brunneum with Insects. Applied and Environmental Microbiology, 2021, 87, e0074821.	3.1	7
69	Independent Evolution of a Lysergic Acid Amide in Aspergillus Species. Applied and Environmental Microbiology, 2021, 87, e0180121.	3.1	6
70	Endophytes matter: Variation of dung beetle performance across different endophyte-infected tall fescue cultivars. Applied Soil Ecology, 2020, 152, 103561.	4.3	5
71	Contribution of a novel gene to lysergic acid amide synthesis in Metarhizium brunneum. BMC Research Notes, 2022, 15, 183.	1.4	4
72	Gene expression associated with light-induced conidiation in Colletotrichum graminicola. Canadian Journal of Microbiology, 1991, 37, 165-167.	1.7	3

#	Article	IF	CITATIONS
73	Pathways to Diverse Ergot Alkaloid Profiles in Fungi. Recent Advances in Phytochemistry, 2006, , 23-52.	0.5	3
74	Significance of fungal peptide secondary metabolites in the agri-food industry. Applied Mycology and Biotechnology, 2001, 1, 115-143.	0.3	2
75	Presence of peptide synthetase gene transcripts and accumulation of ergopeptines in <1>Claviceps purpurea 1 and <1>Neotyphodium coenophialum 1 . Canadian Journal of Microbiology, 1998, 44, 80-86.	1.7	2
76	Ergot Alkaloids. , 2011, , 195-214.		1
77	Potential for Industrial Application of Microbes in Symbioses that Influence Plant Productivity and Sustainability in Agricultural, Natural, or Restored Ecosystems. Industrial Biotechnology, 2014, 10, 347-353.	0.8	1
78	Biological activity of Claviceps gigantea in juvenile New Zealand rabbits. Mycotoxin Research, 2018, 34, 297-305.	2.3	0