Wei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4386824/publications.pdf

Version: 2024-02-01

40 papers 3,846 citations

236925 25 h-index 302126 39 g-index

41 all docs

41 docs citations

41 times ranked

5494 citing authors

#	Article	IF	CITATIONS
1	Recent advances in dynamic covalent chemistry. Chemical Society Reviews, 2013, 42, 6634.	38.1	1,130
2	Dynamic Covalent Chemistry Approaches Toward Macrocycles, Molecular Cages, and Polymers. Accounts of Chemical Research, 2014, 47, 1575-1586.	15.6	406
3	Tessellated multiporous two-dimensional covalent organic frameworks. Nature Reviews Chemistry, 2017, 1, .	30.2	319
4	Crystalline Lithium Imidazolate Covalent Organic Frameworks with High Li-Ion Conductivity. Journal of the American Chemical Society, 2019, 141, 7518-7525.	13.7	261
5	Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors. Nature Communications, 2017, 8, 15194.	12.8	250
6	Solutionâ€Phase Dynamic Assembly of Permanently Interlocked Aryleneethynylene Cages through Alkyne Metathesis. Angewandte Chemie - International Edition, 2015, 54, 7550-7554.	13.8	117
7	(EMIm) ⁺ (PF ₆) ^{â^'} Ionic Liquid Unlocks Optimum Energy/Power Density for Architecture of Nanocarbonâ€Based Dualâ€Ion Battery. Advanced Energy Materials, 2016, 6, 1601378.	19.5	116
8	Single Atom Excels as the Smallest Functional Material. Advanced Functional Materials, 2016, 26, 2988-2993.	14.9	110
9	Tent-pitching-inspired high-valence period 3-cation pre-intercalation excels for anode of 2D titanium carbide (MXene) with high Li storage capacity. Energy Storage Materials, 2019, 16, 163-168.	18.0	110
10	A semiconductor-electrochemistry model for design of high-rate Li ion battery. Journal of Energy Chemistry, 2020, 41, 100-106.	12.9	103
11	2D titanium carbide (MXene) electrodes with lower-F surface for high performance lithium-ion batteries. Journal of Energy Chemistry, 2019, 31, 148-153.	12.9	97
12	Highly-dispersed cobalt clusters decorated onto nitrogen-doped carbon nanotubes as multifunctional electrocatalysts for OER, HER and ORR. Carbon, 2020, 166, 284-290.	10.3	95
13	There is plenty of space in the MXene layers: The confinement and fillings. Journal of Energy Chemistry, 2020, 48, 344-363.	12.9	72
14	Integrating Catalysis of Methane Decomposition and Electrocatalytic Hydrogen Evolution with Ni/CeO ₂ for Improved Hydrogen Production Efficiency. ChemSusChem, 2019, 12, 1000-1010.	6.8	58
15	K+ alkalization promoted Ca2+ intercalation in V2CT MXene for enhanced Li storage. Journal of Energy Chemistry, 2020, 49, 358-364.	12.9	54
16	Carbonâ€Based Dualâ€Ion Battery with Enhanced Capacity and Cycling Stability. ChemElectroChem, 2018, 5, 3612-3618.	3.4	46
17	MOFs fertilized transition-metallic single-atom electrocatalysts for highly-efficient oxygen reduction: Spreading the synthesis strategies and advanced identification. Journal of Energy Chemistry, 2022, 67, 391-422.	12.9	43
18	Increasing surface active Co2+ sites of MOF-derived Co3O4 for enhanced supercapacitive performance via NaBH4 reduction. Electrochimica Acta, 2018, 289, 319-323.	5.2	37

#	Article	IF	Citations
19	Integrated Co3O4/carbon fiber paper for high-performance anode of dual-ion battery. Journal of Energy Chemistry, 2019, 37, 7-12.	12.9	37
20	Optimizing the micropore-to-mesopore ratio of carbon-fiber-cloth creates record-high specific capacitance. Journal of Energy Chemistry, 2020, 47, 210-216.	12.9	37
21	Reinventing the mechanism of high-performance Bi anode in aqueous K+ rechargeable batteries. Journal of Energy Chemistry, 2020, 48, 21-28.	12.9	34
22	Integrated MXene&CoFe ₂ O ₄ electrodes with multi-level interfacial architectures for synergistic lithium-ion storage. Nanoscale, 2019, 11, 15037-15042.	5.6	33
23	Suppressing the Pd-C interaction through B-doping for highly efficient oxygen reduction. Carbon, 2019, 149, 370-379.	10.3	32
24	Transition Metalâ€Nitrogenâ€Carbon Active Site for Oxygen Reduction Electrocatalysis: Beyond the Fascinations of TMâ€N ₄ . ChemCatChem, 2019, 11, 655-668.	3.7	30
25	Ultrafast activation of peroxymonosulfate by reduction of trace Fe3+ with Ti3C2 MXene under neutral and alkaline conditions: Reducibility and confinement effect. Chemical Engineering Journal, 2021, 423, 130012.	12.7	29
26	Unlocking the Electrocatalytic Activity of Chemically Inert Amorphous Carbonâ€Nitrogen for Oxygen Reduction: Discerning and Refactoring Chaotic Bonds. ChemElectroChem, 2017, 4, 1269-1273.	3.4	24
27	Etching-courtesy NH4+ pre-intercalation enables highly-efficient Li+ storage of MXenes via the renaissance of interlayer redox. Journal of Energy Chemistry, 2022, 72, 26-32.	12.9	24
28	Increasing the range of non-noble-metal single-atom catalysts. Chinese Journal of Catalysis, 2017, 38, 1489-1497.	14.0	21
29	Accessible 3D Integrative Paper Electrode Shapes: Allâ€Carbon Dualâ€lon Batteries with Optimum Packaging Performances. ChemElectroChem, 2017, 4, 3238-3243.	3.4	21
30	Activating an MXene as a host for EMIm ⁺ by electrochemistry-driven Fe-ion pre-intercalation. Journal of Materials Chemistry A, 2020, 8, 16265-16270.	10.3	17
31	Boosting the kinetics of PF6â^' into graphitic layers for the optimal cathode of dual-ion batteries: The rehearsal of pre-intercalating Li+. Journal of Energy Chemistry, 2022, 71, 392-399.	12.9	17
32	Mechanism orienting structure construction of electrodes for aqueous electrochemical energy storage systems: a review. Nanoscale, 2021, 13, 3412-3435.	5.6	15
33	Pinpointing single metal atom anchoring sites in carbon for oxygen reduction: Doping sites or defects?. Chinese Journal of Catalysis, 2018, 39, 4-7.	14.0	13
34	Stabilizing black phosphorus <i>via</i> inorganic small-molecular H ₃ BO ₃ . Chemical Communications, 2020, 56, 11418-11421.	4.1	9
35	Rationalizing the Anion Storage in Cathodes for Optimum Dual-Ion Batteries: State of the Art and the Prospect. Energy & Drospect. Energy & Drospec	5.1	9
36	Inorganic nanocrystal-dynamic porous polymer assemblies with effective energy transfer for sensitive diagnosis of urine copper. Chemical Science, 2020, 11, 12187-12193.	7.4	8

#	Article	IF	CITATIONS
37	Unlocking the optimum supercapacitance of Co3O4 by reducing the Co valence state via Mn doping. Materials Today Communications, 2021, 28, 102665.	1.9	5
38	Optimizing the SEM specimen preparation method for accurate microanalysis of carbon nanotube/nanocluster hybrids. Journal of Microscopy, 2021, 282, 267-273.	1.8	4
39	Palladium–Cobalt Bimetallic Nanoparticles Supported on Nitrogen-Doped Graphene as Efficient Electrocatalyst for Oxygen Reduction. Journal of Electronic Materials, 2022, 51, 4580-4588.	2.2	2
40	Highly electrochemicallyâ€active surface area of Ni (OH) 2 with petal structure in situ grown on conductive Ni foam for efficient hydrogen evolution reaction. Surface and Interface Analysis, 0, , .	1.8	1