Viktor Chikan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4386343/publications.pdf

Version: 2024-02-01

VINTOR CHIRAN

#	Article	IF	CITATIONS
1	The role of asymmetry in few-cycle, mid-IR pulses during THz pulse generation. Journal of Optics (United Kingdom), 2022, 24, 045502.	2.2	0
2	Numerical simulations of THz pulse generation with two-color laser pulses in the 2.15-15.15 µm spectral range. , 2021, , .		0
3	Facile one-pot synthesis of γ-Fe ₂ O ₃ nanoparticles by inductive heating. Materials Advances, 2021, 2, 5616-5621.	5.4	3
4	Numerical study of terahertz pulse generation from few-cycle laser pulses in the mid-IR spectral range. , 2021, , .		0
5	Activation of N ₂ on Manganese Nitride-Supported Ni ₃ and Fe ₃ Clusters and Relevance to Ammonia Formation. Journal of Physical Chemistry Letters, 2021, 12, 6535-6542.	4.6	19
6	Size-Controlled Synthesis of Iron and Iron Oxide Nanoparticles by the Rapid Inductive Heating Method. ACS Omega, 2020, 5, 19853-19860.	3.5	40
7	Direct Production of CH(A ² î") Radical from Intense Femtosecond Near-IR Laser Pulses. Journal of Physical Chemistry A, 2020, 124, 8112-8119.	2.5	2
8	Pulse Magnetic Fields Induced Drug Release from Gold Coated Magnetic Nanoparticle Decorated Liposomes. Magnetochemistry, 2020, 6, 52.	2.4	7
9	Triggering Passive Molecular Transport into Cells with a Combination of Inhomogeneous Magnetic Fields and Magnetic Nanoparticles. ACS Applied Nano Materials, 2020, 3, 2414-2420.	5.0	4
10	Formation of CN Radical from Nitrogen and Carbon Condensation and from Photodissociation in Femtosecond Laser-Induced Plasmas: Time-Resolved FT-UV–Vis Spectroscopic Study of the Violet Emission of CN Radical. Journal of Physical Chemistry A, 2020, 124, 2755-2767.	2.5	4
11	Manipulating the Geometric and Electronic Structures of Manganese Nitrides for Ammonia Synthesis. ChemCatChem, 2020, 12, 2233-2244.	3.7	19
12	Phase-controlled, second-harmonic-optimized terahertz pulse generation in nitrogen by infrared two-color laser pulses. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1838.	2.1	4
13	Numerical Simulations of THz Generation with two-Color Mid-Infrared Laser Pulse and Relative Phase Control. , 2019, , .		Ο
14	Theoretical Investigation of the Optimal Nonlinear Crystal Thickness for THz Generation from two-Color Laser Pulse Ionized Gas under Different Laser Pulse Parameters. , 2019, , .		0
15	Control of THz field waveform emitted from air plasma by chirping two-color laser pulses. Optics Communications, 2019, 436, 222-226.	2.1	9
16	THz generation from mid-infrared two-color laser pulses in air and a simple method for controlling the THz intensity. , 2019, , .		1
17	Theoretical investigation of terahertz generation from two-color laser pulse ionized gases: the role of the thickness of the nonlinear crystal. , 2019, , .		0
18	Fe and Ni Dopants Facilitating Ammonia Synthesis on Mn ₄ N and Mechanistic Insights from First-Principles Methods. Journal of Physical Chemistry C, 2018, 122, 6109-6116.	3.1	32

VIKTOR CHIKAN

#	Article	IF	CITATIONS
19	Rapid Induction and Microwave Heat-Up Syntheses of CdSe Quantum Dots. ACS Omega, 2018, 3, 5399-5405.	3.5	13
20	Controlling terahertz spectrum in asymmetric air plasmas: the role of GDD and phase. , 2018, , .		1
21	The impact of dispersion of the ultrashort light pulses on the THz radiation formation from asymmetric air plasmas. Proceedings of SPIE, 2017, , .	0.8	1
22	The Extreme Light Infrastructure—Attosecond Light Pulse Source (ELI-ALPS) Project. Springer Series in Chemical Physics, 2017, , 181-218.	0.2	7
23	Biosensing and Cancer Treatment with Magnetic Nanoparticles. , 2017, , 397-430.		0
24	Rapid Nanoparticle Synthesis by Magnetic and Microwave Heating. Nanomaterials, 2016, 6, 85.	4.1	62
25	Graphene/GaSe-Nanosheet Hybrid: Towards High Gain and Fast Photoresponse. Scientific Reports, 2016, 6, 19161.	3.3	79
26	Magnetic Field Induced Ultrasound from Colloidal Superparamagnetic Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 2386-2391.	3.1	9
27	Hexagonal magnetite nanoprisms: preparation, characterization and cellular uptake. Journal of Materials Chemistry B, 2015, 3, 4647-4653.	5.8	27
28	Synthesis and Characterization of Gallium-Doped CdSe Quantum Dots. Journal of Physical Chemistry C, 2015, 119, 10749-10757.	3.1	17
29	Nested Helmholtz coil design for producing homogeneous transient rotating magnetic fields. Review of Scientific Instruments, 2015, 86, 034701.	1.3	9
30	Combining hard and soft magnetism into a single core-shell nanoparticle to achieve both hyperthermia and image contrast. Therapeutic Delivery, 2015, 6, 1195-1210.	2.2	5
31	Pulsed Magnetic Field Induced Fast Drug Release from Magneto Liposomes via Ultrasound Generation. Journal of Physical Chemistry B, 2014, 118, 11715-11722.	2.6	46
32	Investigation of Fluorescence Emission from CdSe Nanorods in PMMA and P3HT/PMMA Films. Journal of Physical Chemistry C, 2013, 117, 18818-18828.	3.1	2
33	Effects of interband transitions on Faraday rotation in metallic nanoparticles. Journal of Physics Condensed Matter, 2013, 25, 325302.	1.8	13
34	Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model. International Journal of Nanomedicine, 2012, 7, 297.	6.7	111
35	Direct Synthesis of Aqueous Quantum Dots through 4,4′-Bipyridine-Based Twin Ligand Strategy. Inorganic Chemistry, 2012, 51, 4521-4526	4.0	6
36	Investigation of Charge Transfer Interactions in CdSe Nanorod P3HT/PMMA Blends by Optical Microscopy. Journal of Physical Chemistry C, 2012, 116, 3153-3160.	3.1	7

VIKTOR CHIKAN

#	Article	IF	CITATIONS
37	Synthesis of Hafnium Oxide-Gold Core–Shell Nanoparticles. Inorganic Chemistry, 2012, 51, 518-522.	4.0	18
38	Magnetic-Fe/Fe ₃ O ₄ -nanoparticle-bound SN38 as carboxylesterase-cleavable prodrug for the delivery to tumors within monocytes/macrophages. Beilstein Journal of Nanotechnology, 2012, 3, 444-455.	2.8	57
39	Faraday rotation enhancement of gold coated Fe2O3 nanoparticles: Comparison of experiment and theory. Journal of Chemical Physics, 2011, 135, 224502.	3.0	27
40	Challenges and Prospects of Electronic Doping of Colloidal Quantum Dots: Case Study of CdSe. Journal of Physical Chemistry Letters, 2011, 2, 2783-2789.	4.6	61
41	Abstract LB-205: Using cell-delivered nanoparticles to cause local hyperthermia increases survival in a murine metastatic pancreatic cancer model. , 2011, , .		0
42	A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study. BMC Cancer, 2010, 10, 119.	2.6	193
43	Preparation of Iron and Gold Silicide Nanodomains on Silicon (111) by the Reaction of Gold, Ironâ^'Gold Coreâ^'Shell, and Alloy Nanoparticles with Triethylsilane. ACS Applied Materials & Interfaces, 2010, 2, 2238-2247.	8.0	7
44	Phase-Controlled Synthesis of Iron Silicide (Fe3Si and FeSi2) Nanoparticles in Solution. Chemistry of Materials, 2010, 22, 2892-2897.	6.7	65
45	Quantized Ostwald Ripening of Colloidal Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 16263-16269.	3.1	64
46	Attenuation of Mouse Melanoma by A/C Magnetic Field after Delivery of Bi-Magnetic Nanoparticles by Neural Progenitor Cells. ACS Nano, 2010, 4, 7093-7104.	14.6	81
47	Direct Observation of Gold Nanoparticle Assemblies with the Porin MspA on Mica. ACS Nano, 2009, 3, 462-466.	14.6	11
48	Progress toward Producing n-Type CdSe Quantum Dots: Tin and Indium Doped CdSe Quantum Dots. Journal of Physical Chemistry C, 2009, 113, 13008-13015.	3.1	47
49	Bifunctional magnetic nanoparticles for early detection and magnetic hyperthermia cancer therapy. FASEB Journal, 2009, 23, LB335.	0.5	0
50	Synthesis of Water-Soluble Ironâ^'Gold Alloy Nanoparticles. Chemistry of Materials, 2008, 20, 6389-6395.	6.7	41
51	<i>In Situ</i> Observation of Heterogeneous Growth of CdSe Quantum Dots: Effect of Indium Doping on the Growth Kinetics. ACS Nano, 2008, 2, 1411-1421.	14.6	69
52	Effect of Cd/Te Ratio on the Formation of CdTe Magic-Sized Quantum Dots during Aggregation. Journal of Physical Chemistry A, 2008, 112, 9304-9311.	2.5	21
53	MspA Porinâ^'Gold Nanoparticle Assemblies: Enhanced Binding through a Controlled Cysteine Mutation. Nano Letters, 2008, 8, 1229-1236.	9.1	21
54	Quantized Growth of CdTe Quantum Dots; Observation of Magic-Sized CdTe Quantum Dots. Journal of Physical Chemistry C, 2007, 111, 14977-14983.	3.1	135

VIKTOR CHIKAN

#	Article	IF	CITATIONS
55	Plasmonâ^'Phonon Coupling in Charged n-Type CdSe Quantum Dots:  A THz Time-Domain Spectroscopic Study. Nano Letters, 2007, 7, 2521-2528.	9.1	18
56	State-Resolved Dynamics of the CN(B2Σ+) and CH(A2Δ) Excited Products Resulting from the VUV Photodissociation of CH3CNâ€. Journal of Physical Chemistry A, 2007, 111, 6637-6648.	2.5	5
57	State-Resolved Dynamics of the CH(A2Δ) Channels from Single and Multiple Photon Dissociation of Bromoform in the 10â^'20 eV Energy Range. Journal of Physical Chemistry A, 2006, 110, 2850-2857.	2.5	14
58	Dynamics of the CH(A2Δ) Product from the Reaction of C2H with O2 Studied by Fourier Transform Visible Spectroscopy. Journal of Physical Chemistry A, 2006, 110, 7521-7526.	2.5	4
59	Fourier transform infrared spectroscopy studies of water-polymer interactions in chemically amplified photoresists. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 344.	1.6	5
60	Vibrational and Rotational Distributions of the CH(A2Δ) Product of the C2H + O(3P) Reaction Studied by Fourier Transform Visible (FTVIS) Emission Spectroscopy. Journal of Physical Chemistry A, 2005, 109, 10646-10653.	2.5	11
61	Vibrational Distributions of the CO(v) Products of the C2H2+ O(3P) and HCCO + O(3P) Reactions Studied by FTIR Emission. Journal of Physical Chemistry A, 2005, 109, 2525-2533.	2.5	19
62	Spectroscopy of GaSe Nanoparticle Aggregates. Journal of Physical Chemistry B, 2004, 108, 4701-4710.	2.6	30
63	Product State Distributions of Vibrationally Excited CO(v) for the CH(X2Î) and CH(A2Δ) Channels of the C2H + O(3P) Reaction. Journal of Physical Chemistry A, 2004, 108, 10770-10782.	2.5	12
64	Spectroscopy and dynamics of GaSe nanoparticles and nanoparticle aggregates. , 2004, 5352, 32.		0
65	Electron and Hole Intraband Spectroscopy of GaSe Nanoparticles. Journal of Physical Chemistry B, 2003, 107, 10389-10397.	2.6	23
66	Relaxation dynamics in photoexcited GaSe nanoparticles. Journal of Chemical Physics, 2002, 117, 8944-8952.	3.0	22
67	Spectroscopy, dynamics, and electron transfer in GaSe nanoparticles. , 2002, , .		0
68	Synthesis of Highly Luminescent GaSe Nanoparticles. Nano Letters, 2002, 2, 141-145.	9.1	67
69	Carrier Relaxation Dynamics in GaSe Nanoparticles. Nano Letters, 2002, 2, 1015-1020.	9.1	29
70	Size-Dependent Spectroscopy of MoS2Nanoclusters. Journal of Physical Chemistry B, 2002, 106, 3794-3804.	2.6	143
71	Relaxation and electron transfer dynamics in bare and DTDCI sensitized MoS[sub 2] nanoclusters. Journal of Chemical Physics, 2000, 113, 5448.	3.0	15
72	One-Step Synthesis of Methyl Isobutyl Ketone from Acetone and Hydrogen over Cu-on-MgO Catalysts. Journal of Catalysis, 1999, 184, 134-143.	6.2	75