Michal Marszewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4386321/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Semiconductor-based photocatalytic CO ₂ conversion. Materials Horizons, 2015, 2, 261-278.	12.2	380
2	Artificial phototropism for omnidirectional tracking and harvesting of light. Nature Nanotechnology, 2019, 14, 1048-1055.	31.5	191
3	New opportunities in Stöber synthesis: preparation of microporous and mesoporous carbon spheres. Journal of Materials Chemistry, 2012, 22, 12636.	6.7	120
4	AlSb thin films as negative electrodes for Li-ion and Na-ion batteries. Journal of Power Sources, 2013, 243, 699-705.	7.8	89
5	Adsorption Properties of Activated Carbons Prepared from Waste CDs and DVDs. ACS Sustainable Chemistry and Engineering, 2015, 3, 733-742.	6.7	73
6	Benzene and Methane Adsorption on Ultrahigh Surface Area Carbons Prepared from Sulphonated Styrene Divinylbenzene Resin by KOH Activation. Adsorption Science and Technology, 2015, 33, 587-594.	3.2	27
7	Comparing methods for measuring thickness, refractive index, and porosity of mesoporous thin films. Microporous and Mesoporous Materials, 2020, 291, 109677.	4.4	27
8	Carbon–gold core–shell structures: formation of shells consisting of gold nanoparticles. Chemical Communications, 2012, 48, 3972.	4.1	26
9	Highly microporous polymer-based carbons for CO2 and H2 adsorption. RSC Advances, 2014, 4, 14795.	3.6	23
10	Synthesis of Porous Crystalline Doped Titania Photocatalysts Using Modified Precursor Strategy. Chemistry of Materials, 2016, 28, 7878-7888.	6.7	23
11	Equilibrium isotherms and isosteric heat for CO2 adsorption on nanoporous carbons from polymers. Adsorption, 2016, 22, 581-588.	3.0	23
12	Polymer-templated mesoporous carbons synthesized in the presence of nickel nanoparticles, nickel oxide nanoparticles, and nickel nitrate. Applied Surface Science, 2012, 258, 3763-3770.	6.1	22
13	Microwave-Assisted Synthesis of Porous Carbon–Titania and Highly Crystalline Titania Nanostructures. ACS Applied Materials & Interfaces, 2013, 5, 1948-1954.	8.0	20
14	Toward Tunable Adsorption Properties, Structure, and Crystallinity of Titania Obtained by Block Copolymer and Scaffold-Assisted Templating. Langmuir, 2013, 29, 12549-12559.	3.5	20
15	Exploring the Effect of Porous Structure on Thermal Conductivity in Templated Mesoporous Silica Films. Journal of Physical Chemistry C, 2019, 123, 21721-21730.	3.1	19
16	Thick Transparent Nanoparticle-Based Mesoporous Silica Monolithic Slabs for Thermally Insulating Window Materials. ACS Applied Nano Materials, 2019, 2, 4547-4555.	5.0	16
17	Computer-generated mesoporous materials and associated structural characterization. Computational Materials Science, 2019, 157, 156-167.	3.0	16
18	Organic acid-assisted soft-templating synthesis of ordered mesoporous carbons. Adsorption, 2013, 19, 563-569.	3.0	15

MICHAL MARSZEWSKI

#	Article	IF	CITATIONS
19	Saran-Derived Carbons for CO2and Benzene Sorption at Ambient Conditions. Industrial & Engineering Chemistry Research, 2014, 53, 15383-15388.	3.7	15
20	Elastic and plastic mechanical properties of nanoparticle-based silica aerogels and xerogels. Microporous and Mesoporous Materials, 2022, 330, 111569.	4.4	15
21	Effect of surface hydroxyl groups on heat capacity of mesoporous silica. Applied Physics Letters, 2018, 112, .	3.3	11
22	Engineering mesoporous silica for superior optical and thermal properties. MRS Energy & Sustainability, 2020, 7, 1.	3.0	11
23	Controlling Thermal Conductivity in Mesoporous Silica Films Using Pore Size and Nanoscale Architecture. Journal of Physical Chemistry Letters, 2020, 11, 3731-3737.	4.6	8
24	Scaffold-assisted synthesis of crystalline mesoporous titania materials. RSC Advances, 2015, 5, 61960-61972.	3.6	6
25	Transparent silica aerogel slabs synthesized from nanoparticle colloidal suspensions at near ambient conditions on omniphobic liquid substrates. Journal of Colloid and Interface Science, 2022, 606, 884-897.	9.4	6
26	Examining the Role of Atomic Scale Heterogeneity on the Thermal Conductivity of Transparent, Thermally Insulating, Mesoporous Silica–Titania Thin Films. Journal of Physical Chemistry C, 2020, 124, 27442-27452.	3.1	4
27	Room temperature rectification in tapered-channel thermal diodes through nanoscale confinement-induced liquid–solid phase change. Journal of Applied Physics, 2021, 129, 075103.	2.5	1