Nico Dissmeyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4385886/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trichome Transcripts as Efficiency Control for Synthetic Biology and Molecular Farming. Methods in Molecular Biology, 2022, 2379, 265-276.	0.9	1
2	Engineering Destabilizing N-Termini in Plastids. Methods in Molecular Biology, 2022, 2379, 171-181.	0.9	2
3	Oxygen sensing: Protein degradation meets retrograde signaling. Current Biology, 2022, 32, R281-R284.	3.9	1
4	CDKD-dependent activation of CDKA;1 controls microtubule dynamics and cytokinesis during meiosis. Journal of Cell Biology, 2020, 219, .	5.2	26
5	Distinct branches of the Nâ€end rule pathway modulate the plant immune response. New Phytologist, 2019, 221, 988-1000.	7.3	59
6	At <scp>ERF</scp> #111/ <scp>ABR</scp> 1 is a transcriptional activator involved in the wounding response. Plant Journal, 2019, 100, 969-990.	5.7	27
7	Modulating Protein Stability to Switch Toxic Protein Function On and Off in Living Cells. Plant Physiology, 2019, 179, 929-942.	4.8	16
8	The Cdk1/Cdk2 homolog CDKA;1 controls the recombination landscape in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12534-12539.	7.1	35
9	Proteomic and lipidomic analyses of the Arabidopsis <i>atg5</i> autophagy mutant reveal major changes in endoplasmic reticulum and peroxisome metabolisms and in lipid composition. New Phytologist, 2019, 223, 1461-1477.	7.3	54
10	Conditional Protein Function via N-Degron Pathway–Mediated Proteostasis in Stress Physiology. Annual Review of Plant Biology, 2019, 70, 83-117.	18.7	53
11	New beginnings and new ends: methods for large-scale characterization of protein termini and their use in plant biology. Journal of Experimental Botany, 2019, 70, 2021-2038.	4.8	37
12	PROTEOSTASIS: A European Network to Break Barriers and Integrate Science on Protein Homeostasis. Trends in Biochemical Sciences, 2019, 44, 383-387.	7.5	15
13	Differential N-end Rule Degradation of RIN4/NOI Fragments Generated by the AvrRpt2 Effector Protease. Plant Physiology, 2019, 180, 2272-2289.	4.8	16
14	N-term 2017: Proteostasis via the N-terminus. Trends in Biochemical Sciences, 2019, 44, 293-295.	7.5	1
15	Increases in activity of proteasome and papain-like cysteine protease in Arabidopsis autophagy mutants: back-up compensatory effect or cell-death promoting effect?. Journal of Experimental Botany, 2018, 69, 1369-1385.	4.8	55
16	Realâ€time detection of Nâ€end ruleâ€mediated ubiquitination via fluorescently labeled substrate probes. New Phytologist, 2018, 217, 613-624.	7.3	32
17	Redox control and autoxidation of class 1, 2 and 3 phytoglobins from Arabidopsis thaliana. Scientific Reports, 2018, 8, 13714.	3.3	9
18	Life and death of proteins after protease cleavage: protein degradation by the Nâ€end rule pathway. New Phytologist, 2018, 218, 929-935.	7.3	77

NICO DISSMEYER

#	Article	IF	CITATIONS
19	Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in <i>Arabidopsis</i> . Genes and Development, 2017, 31, 197-208.	5.9	128
20	Plant cysteine oxidases are dioxygenases that directly enable arginyl transferase-catalysed arginylation of N-end rule targets. Nature Communications, 2017, 8, 14690.	12.8	171
21	In Vivo Reporters for Protein Half-Life. Methods in Molecular Biology, 2017, 1669, 387-406.	0.9	10
22	Conditional Modulation of Biological Processes by Low-Temperature Degrons. Methods in Molecular Biology, 2017, 1669, 407-416.	0.9	12
23	Modulation of plant growth in vivo and identification of kinase substrates using an analog-sensitive variant of CYCLIN-DEPENDENT KINASE A;1. BMC Plant Biology, 2016, 16, 209.	3.6	13
24	Phenotypes on demand via switchable target protein degradation in multicellular organisms. Nature Communications, 2016, 7, 12202.	12.8	50
25	Normalized Quantitative Western Blotting Based on Standardized Fluorescent Labeling. Methods in Molecular Biology, 2016, 1450, 247-258.	0.9	12
26	Peptide Arrays for Binding Studies of E3 Ubiquitin Ligases. Methods in Molecular Biology, 2016, 1450, 85-94.	0.9	3
27	Generation of Artificial N-end Rule Substrate Proteins In Vivo and In Vitro. Methods in Molecular Biology, 2016, 1450, 55-83.	0.9	15
28	An improved workflow for quantitative Nâ€ŧerminal chargeâ€based fractional diagonal chromatography (ChaFRADIC) to study proteolytic events in <i>Arabidopsis thaliana</i> . Proteomics, 2015, 15, 2458-2469.	2.2	72
29	Generic tools for conditionally altering protein abundance and phenotypes on demand. Biological Chemistry, 2014, 395, 737-762.	2.5	23
30	Targeted Proteomics Analysis of Protein Degradation in Plant Signaling on an LTQ-Orbitrap Mass Spectrometer. Journal of Proteome Research, 2014, 13, 4246-4258.	3.7	44
31	Cell cycle control across the eukaryotic kingdom. Trends in Cell Biology, 2013, 23, 345-356.	7.9	313
32	A General G1/S-Phase Cell-Cycle Control Module in the Flowering Plant Arabidopsis thaliana. PLoS Genetics, 2012, 8, e1002847.	3.5	103
33	RETINOBLASTOMA RELATED1 Regulates Asymmetric Cell Divisions in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 4083-4095.	6.6	74
34	Genetic Framework of Cyclin-Dependent Kinase Function in Arabidopsis. Developmental Cell, 2012, 22, 1030-1040.	7.0	177
35	Use of Phospho-Site Substitutions to Analyze the Biological Relevance of Phosphorylation Events in Regulatory Networks. Methods in Molecular Biology, 2011, 779, 93-138.	0.9	47
36	Guide to the Book Plant Kinases. Methods in Molecular Biology, 2011, 779, 3-5.	0.9	1

NICO DISSMEYER

#	Article	IF	CITATIONS
37	The Age of Protein Kinases. Methods in Molecular Biology, 2011, 779, 7-52.	0.9	40
38	Bimolecular-Fluorescence Complementation Assay to Monitor Kinase–Substrate Interactions In Vivo. Methods in Molecular Biology, 2011, 779, 245-257.	0.9	20
39	Arabidopsis seed secrets unravelled after a decade of genetic and omicsâ€driven research. Plant Journal, 2010, 61, 971-981.	5.7	161
40	The regulatory network of cell-cycle progression is fundamentally different in plants versus yeast or metazoans. Plant Signaling and Behavior, 2010, 5, 1613-1618.	2.4	24
41	Control of Cell Proliferation, Organ Growth, and DNA Damage Response Operate Independently of Dephosphorylation of the <i>Arabidopsis</i> Cdk1 Homolog CDKA;1 Â. Plant Cell, 2009, 21, 3641-3654.	6.6	106
42	T-Loop Phosphorylation of Arabidopsis CDKA;1 Is Required for Its Function and Can Be Partially Substituted by an Aspartate Residue. Plant Cell, 2007, 19, 972-985.	6.6	98
43	Bypassing genomic imprinting allows seed development. Nature, 2007, 447, 312-315.	27.8	102
44	Analysis of the Subcellular Localization, Function, and Proteolytic Control of the Arabidopsis Cyclin-Dependent Kinase Inhibitor ICK1/KRP1. Plant Physiology, 2006, 141, 1293-1305.	4.8	96