Nico Dissmeyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4385886/publications.pdf Version: 2024-02-01

NICO DISSMEVED

#	Article	IF	CITATIONS
1	Cell cycle control across the eukaryotic kingdom. Trends in Cell Biology, 2013, 23, 345-356.	7.9	313
2	Genetic Framework of Cyclin-Dependent Kinase Function in Arabidopsis. Developmental Cell, 2012, 22, 1030-1040.	7.0	177
3	Plant cysteine oxidases are dioxygenases that directly enable arginyl transferase-catalysed arginylation of N-end rule targets. Nature Communications, 2017, 8, 14690.	12.8	171
4	Arabidopsis seed secrets unravelled after a decade of genetic and omicsâ€driven research. Plant Journal, 2010, 61, 971-981.	5.7	161
5	Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in <i>Arabidopsis</i> . Genes and Development, 2017, 31, 197-208.	5.9	128
6	Control of Cell Proliferation, Organ Growth, and DNA Damage Response Operate Independently of Dephosphorylation of the <i>Arabidopsis</i> Cdk1 Homolog CDKA;1 Â. Plant Cell, 2009, 21, 3641-3654.	6.6	106
7	A General G1/S-Phase Cell-Cycle Control Module in the Flowering Plant Arabidopsis thaliana. PLoS Genetics, 2012, 8, e1002847.	3.5	103
8	Bypassing genomic imprinting allows seed development. Nature, 2007, 447, 312-315.	27.8	102
9	T-Loop Phosphorylation of Arabidopsis CDKA;1 Is Required for Its Function and Can Be Partially Substituted by an Aspartate Residue. Plant Cell, 2007, 19, 972-985.	6.6	98
10	Analysis of the Subcellular Localization, Function, and Proteolytic Control of the Arabidopsis Cyclin-Dependent Kinase Inhibitor ICK1/KRP1. Plant Physiology, 2006, 141, 1293-1305.	4.8	96
11	Life and death of proteins after protease cleavage: protein degradation by the Nâ€end rule pathway. New Phytologist, 2018, 218, 929-935.	7.3	77
12	RETINOBLASTOMA RELATED1 Regulates Asymmetric Cell Divisions in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 4083-4095.	6.6	74
13	An improved workflow for quantitative Nâ€ŧerminal chargeâ€based fractional diagonal chromatography (ChaFRADIC) to study proteolytic events in <i>Arabidopsis thaliana</i> . Proteomics, 2015, 15, 2458-2469.	2.2	72
14	Distinct branches of the Nâ€end rule pathway modulate the plant immune response. New Phytologist, 2019, 221, 988-1000.	7.3	59
15	Increases in activity of proteasome and papain-like cysteine protease in Arabidopsis autophagy mutants: back-up compensatory effect or cell-death promoting effect?. Journal of Experimental Botany, 2018, 69, 1369-1385.	4.8	55
16	Proteomic and lipidomic analyses of the Arabidopsis <i>atg5</i> autophagy mutant reveal major changes in endoplasmic reticulum and peroxisome metabolisms and in lipid composition. New Phytologist, 2019, 223, 1461-1477.	7.3	54
17	Conditional Protein Function via N-Degron Pathway–Mediated Proteostasis in Stress Physiology. Annual Review of Plant Biology, 2019, 70, 83-117.	18.7	53
18	Phenotypes on demand via switchable target protein degradation in multicellular organisms. Nature Communications, 2016, 7, 12202.	12.8	50

NICO DISSMEYER

#	Article	IF	CITATIONS
19	Use of Phospho-Site Substitutions to Analyze the Biological Relevance of Phosphorylation Events in Regulatory Networks. Methods in Molecular Biology, 2011, 779, 93-138.	0.9	47
20	Targeted Proteomics Analysis of Protein Degradation in Plant Signaling on an LTQ-Orbitrap Mass Spectrometer. Journal of Proteome Research, 2014, 13, 4246-4258.	3.7	44
21	The Age of Protein Kinases. Methods in Molecular Biology, 2011, 779, 7-52.	0.9	40
22	New beginnings and new ends: methods for large-scale characterization of protein termini and their use in plant biology. Journal of Experimental Botany, 2019, 70, 2021-2038.	4.8	37
23	The Cdk1/Cdk2 homolog CDKA;1 controls the recombination landscape in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12534-12539.	7.1	35
24	Realâ€time detection of Nâ€end ruleâ€mediated ubiquitination via fluorescently labeled substrate probes. New Phytologist, 2018, 217, 613-624.	7.3	32
25	At <scp>ERF</scp> #111/ <scp>ABR</scp> 1 is a transcriptional activator involved in the wounding response. Plant Journal, 2019, 100, 969-990.	5.7	27
26	CDKD-dependent activation of CDKA;1 controls microtubule dynamics and cytokinesis during meiosis. Journal of Cell Biology, 2020, 219, .	5.2	26
27	The regulatory network of cell-cycle progression is fundamentally different in plants versus yeast or metazoans. Plant Signaling and Behavior, 2010, 5, 1613-1618.	2.4	24
28	Generic tools for conditionally altering protein abundance and phenotypes on demand. Biological Chemistry, 2014, 395, 737-762.	2.5	23
29	Bimolecular-Fluorescence Complementation Assay to Monitor Kinase–Substrate Interactions In Vivo. Methods in Molecular Biology, 2011, 779, 245-257.	0.9	20
30	Modulating Protein Stability to Switch Toxic Protein Function On and Off in Living Cells. Plant Physiology, 2019, 179, 929-942.	4.8	16
31	Differential N-end Rule Degradation of RIN4/NOI Fragments Generated by the AvrRpt2 Effector Protease. Plant Physiology, 2019, 180, 2272-2289.	4.8	16
32	Generation of Artificial N-end Rule Substrate Proteins In Vivo and In Vitro. Methods in Molecular Biology, 2016, 1450, 55-83.	0.9	15
33	PROTEOSTASIS: A European Network to Break Barriers and Integrate Science on Protein Homeostasis. Trends in Biochemical Sciences, 2019, 44, 383-387.	7.5	15
34	Modulation of plant growth in vivo and identification of kinase substrates using an analog-sensitive variant of CYCLIN-DEPENDENT KINASE A;1. BMC Plant Biology, 2016, 16, 209.	3.6	13
35	Normalized Quantitative Western Blotting Based on Standardized Fluorescent Labeling. Methods in Molecular Biology, 2016, 1450, 247-258.	0.9	12
36	Conditional Modulation of Biological Processes by Low-Temperature Degrons. Methods in Molecular Biology, 2017, 1669, 407-416.	0.9	12

NICO DISSMEYER

#	Article	IF	CITATIONS
37	In Vivo Reporters for Protein Half-Life. Methods in Molecular Biology, 2017, 1669, 387-406.	0.9	10
38	Redox control and autoxidation of class 1, 2 and 3 phytoglobins from Arabidopsis thaliana. Scientific Reports, 2018, 8, 13714.	3.3	9
39	Peptide Arrays for Binding Studies of E3 Ubiquitin Ligases. Methods in Molecular Biology, 2016, 1450, 85-94.	0.9	3
40	Engineering Destabilizing N-Termini in Plastids. Methods in Molecular Biology, 2022, 2379, 171-181.	0.9	2
41	Guide to the Book Plant Kinases. Methods in Molecular Biology, 2011, 779, 3-5.	0.9	1
42	N-term 2017: Proteostasis via the N-terminus. Trends in Biochemical Sciences, 2019, 44, 293-295.	7.5	1
43	Trichome Transcripts as Efficiency Control for Synthetic Biology and Molecular Farming. Methods in Molecular Biology, 2022, 2379, 265-276.	0.9	1
44	Oxygen sensing: Protein degradation meets retrograde signaling. Current Biology, 2022, 32, R281-R284.	3.9	1