
Dimitry G Sayenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4385051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of interlimb interaction via transcutaneous spinal stimulation of cervical and lumbar spinal enlargements. Journal of Neurophysiology, 2022, 127, 1075-1085.	1.8	2
2	Transcutaneous spinal stimulation alters cortical and subcortical activation patterns during mimicked-standing: A proof-of-concept fMRI study. NeuroImage Reports, 2022, 2, 100090.	1.0	4
3	Minimal handgrip force is needed for transcutaneous electrical stimulation to improve hand functions of patients with severe spinal cord injury. Scientific Reports, 2022, 12, 7733.	3.3	10
4	Neuromodulation and restoration of motor responses after severe spinal cord injury. , 2022, , 51-63.		2
5	Effects of transcutaneous spinal stimulation on spatiotemporal cortical activation patterns: a proof-of-concept EEG study. Journal of Neural Engineering, 2022, 19, 046001.	3.5	4
6	Impact of long-term epidural electrical stimulation enabled task-specific training on secondary conditions of chronic paraplegia in two humans. Journal of Spinal Cord Medicine, 2021, 44, 800-805.	1.4	24
7	Transcutaneous spinal cord stimulation improves postural stability in individuals with multiple sclerosis and Related Disorders, 2021, 52, 103009.	2.0	12
8	Potential impact of epidural stimulation on neurogenic bladder function and the value of urodynamic studies throughout usage. Journal of Spinal Cord Medicine, 2021, 44, 515-516.	1.4	0
9	Selectivity and excitability of upper-limb muscle activation during cervical transcutaneous spinal cord stimulation in humans. Journal of Applied Physiology, 2021, 131, 746-759.	2.5	23
10	Low-Intensity and Short-Duration Continuous Cervical Transcutaneous Spinal Cord Stimulation Intervention Does Not Prime the Corticospinal and Spinal Reflex Pathways in Able-Bodied Subjects. Journal of Clinical Medicine, 2021, 10, 3633.	2.4	9
11	Voluntary Modulation of Evoked Responses Generated by Epidural and Transcutaneous Spinal Stimulation in Humans with Spinal Cord Injury. Journal of Clinical Medicine, 2021, 10, 4898.	2.4	13
12	Quantitative Assessment of Clinician Assistance During Dynamic Rehabilitation Using Force Sensitive Resistors. Frontiers in Rehabilitation Sciences, 2021, 2, .	1.2	3
13	Characterization of Spinal Sensorimotor Network Using Transcutaneous Spinal Stimulation during Voluntary Movement Preparation and Performance. Journal of Clinical Medicine, 2021, 10, 5958.	2.4	8
14	Selective Antagonism of A1 Adenosinergic Receptors Strengthens the Neuromodulation of the Sensorimotor Network During Epidural Spinal Stimulation. Frontiers in Systems Neuroscience, 2020, 14, 44.	2.5	6
15	Epidural Electrical Stimulation of the Lumbosacral Spinal Cord Improves Trunk Stability During Seated Reaching in Two Humans With Severe Thoracic Spinal Cord Injury. Frontiers in Systems Neuroscience, 2020, 14, 79.	2.5	20
16	The relationship between maximum tolerance and motor activation during transcutaneous spinal stimulation is unaffected by the carrier frequency or vibration. Physiological Reports, 2020, 8, e14397.	1.7	29
17	Complications of epidural spinal stimulation: lessons from the past and alternatives for the future. Spinal Cord, 2020, 58, 1049-1059.	1.9	28
18	Alterations of Spinal Epidural Stimulation-Enabled Stepping by Descending Intentional Motor Commands and Proprioceptive Inputs in Humans With Spinal Cord Injury. Frontiers in Systems Neuroscience, 2020, 14, 590231.	2.5	14

DIMITRY G SAYENKO

#	Article	IF	CITATIONS
19	Preferential activation of spinal sensorimotor networks via lateralized transcutaneous spinal stimulation in neurologically intact humans. Journal of Neurophysiology, 2019, 122, 2111-2118.	1.8	33
20	Motor Control After Human SCI Through Activation of Muscle Synergies Under Spinal Cord Stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 1331-1340.	4.9	12
21	Dry Immersion as a Ground-Based Model of Microgravity Physiological Effects. Frontiers in Physiology, 2019, 10, 284.	2.8	107
22	On the reflex mechanisms of cervical transcutaneous spinal cord stimulation in human subjects. Journal of Neurophysiology, 2019, 121, 1672-1679.	1.8	39
23	Electrophysiological Guidance of Epidural Electrode Array Implantation over the Human Lumbosacral Spinal Cord to Enable Motor Function after Chronic Paralysis. Journal of Neurotrauma, 2019, 36, 1451-1460.	3.4	56
24	Self-Assisted Standing Enabled by Non-Invasive Spinal Stimulation after Spinal Cord Injury. Journal of Neurotrauma, 2019, 36, 1435-1450.	3.4	143
25	An Autonomic Neuroprosthesis: Noninvasive Electrical Spinal Cord Stimulation Restores Autonomic Cardiovascular Function in Individuals with Spinal Cord Injury. Journal of Neurotrauma, 2018, 35, 446-451.	3.4	70
26	Vestibulospinal and Corticospinal Modulation of Lumbosacral Network Excitability in Human Subjects. Frontiers in Physiology, 2018, 9, 1746.	2.8	11
27	On Muscle Activation for Improving Robotic Rehabilitation after Spinal Cord Injury. , 2018, , .		1
28	Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nature Medicine, 2018, 24, 1677-1682.	30.7	416
29	Electrical Spinal Stimulation, and Imagining of Lower Limb Movements to Modulate Brain-Spinal Connectomes That Control Locomotor-Like Behavior. Frontiers in Physiology, 2018, 9, 1196.	2.8	21
30	Trunk Stability Enabled by Noninvasive Spinal Electrical Stimulation after Spinal Cord Injury. Journal of Neurotrauma, 2018, 35, 2540-2553.	3.4	96
31	Feed-Forwardness of Spinal Networks in Posture and Locomotion. Neuroscientist, 2017, 23, 441-453.	3.5	33
32	Ankle muscle co-contractions during quiet standing are associated with decreased postural steadiness in the elderly. Gait and Posture, 2017, 55, 31-36.	1.4	36
33	Enabling Task-Specific Volitional Motor Functions via Spinal Cord Neuromodulation in a Human With Paraplegia. Mayo Clinic Proceedings, 2017, 92, 544-554.	3.0	189
34	Weight Bearing Over-ground Stepping in an Exoskeleton with Non-invasive Spinal Cord Neuromodulation after Motor Complete Paraplegia. Frontiers in Neuroscience, 2017, 11, 333.	2.8	131
35	Respiratory motor training and neuromuscular plasticity in patients with chronic obstructive pulmonary disease: A pilot study. Respiratory Physiology and Neurobiology, 2016, 229, 59-64.	1.6	15
36	Integration of sensory, spinal, and volitional descending inputs in regulation of human locomotion. Journal of Neurophysiology, 2016, 116, 98-105.	1.8	44

DIMITRY G SAYENKO

#	Article	IF	CITATIONS
37	Acute effects of Dry Immersion on kinematic characteristics of postural corrective responses. Acta Astronautica, 2016, 121, 110-115.	3.2	9
38	Effects of paired transcutaneous electrical stimulation delivered at single and dual sites over lumbosacral spinal cord. Neuroscience Letters, 2015, 609, 229-234.	2.1	57
39	Iron â€ [~] ElectriRx' man: Overground stepping in an exoskeleton combined with noninvasive spinal cord stimulation after paralysis. , 2015, 2015, 1124-7.		16
40	Method to Reduce Muscle Fatigue During Transcutaneous Neuromuscular Electrical Stimulation in Major Knee and Ankle Muscle Groups. Neurorehabilitation and Neural Repair, 2015, 29, 722-733.	2.9	25
41	Transcutaneous electrical spinal-cord stimulation in humans. Annals of Physical and Rehabilitation Medicine, 2015, 58, 225-231.	2.3	176
42	Noninvasive Reactivation of Motor Descending Control after Paralysis. Journal of Neurotrauma, 2015, 32, 1968-1980.	3.4	236
43	Spinal segment-specific transcutaneous stimulation differentially shapes activation pattern among motor pools in humans. Journal of Applied Physiology, 2015, 118, 1364-1374.	2.5	99
44	Effect of whole-body vibration on lower-limb EMG activity in subjects with and without spinal cord injury. Journal of Spinal Cord Medicine, 2014, 37, 525-536.	1.4	14
45	Muscle activity, cross-sectional area, and density following passive standing and whole body vibration: A case series. Journal of Spinal Cord Medicine, 2014, 37, 575-581.	1.4	13
46	Reducing muscle fatigue during transcutaneous neuromuscular electrical stimulation by spatially and sequentially distributing electrical stimulation sources. European Journal of Applied Physiology, 2014, 114, 793-804.	2.5	72
47	Respiratory motor function in seated and supine positions in individuals with chronic spinal cord injury. Respiratory Physiology and Neurobiology, 2014, 203, 9-14.	1.6	13
48	Neuromodulation of evoked muscle potentials induced by epidural spinal-cord stimulation in paralyzed individuals. Journal of Neurophysiology, 2014, 111, 1088-1099.	1.8	136
49	Action Possibility Judgments of People with Varying Motor Abilities Due to Spinal Cord Injury. PLoS ONE, 2014, 9, e110250.	2.5	7
50	Locomotor step training with body weight support improves respiratory motor function in individuals with chronic spinal cord injury. Respiratory Physiology and Neurobiology, 2013, 189, 491-497.	1.6	31
51	Cardiovascular Response of Individuals With Spinal Cord Injury to Dynamic Functional Electrical Stimulation Under Orthostatic Stress. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21, 37-46.	4.9	15
52	What triggers the continuous muscle activity during upright standing?. Gait and Posture, 2013, 37, 72-77.	1.4	40
53	Spatially distributed sequential stimulation reduces muscle fatigue during neuromuscular electrical stimulation. , 2013, 2013, 3614-7.		6
54	Co-contraction of antagonist muscles during knee extension against gravity: Insights for functional electrical stimulation control design. , 2012, 2012, 1843-6.		9

DIMITRY G SAYENKO

#	Article	IF	CITATIONS
55	Effects of balance training with visual feedback during mechanically unperturbed standing on postural corrective responses. Gait and Posture, 2012, 35, 339-344.	1.4	40
56	Effect of spinal cord injury and its lesion level on stretch reflex modulation by cold stimulation in humans. Clinical Neurophysiology, 2011, 122, 163-170.	1.5	4
57	Video game-based neuromuscular electrical stimulation system for calf muscle training: A case study. Medical Engineering and Physics, 2011, 33, 249-255.	1.7	10
58	Positive effect of balance training with visual feedback on standing balance abilities in people with incomplete spinal cord injury. Spinal Cord, 2010, 48, 886-893.	1.9	74
59	Acute effects of whole body vibration during passive standing on soleus H-reflex in subjects with and without spinal cord injury. Neuroscience Letters, 2010, 482, 66-70.	2.1	76
60	Differential effects of plantar cutaneous afferent excitation on soleus stretch and Hâ€reflex. Muscle and Nerve, 2009, 39, 761-769.	2.2	42
61	Facilitation of the soleus stretch reflex induced by electrical excitation of plantar cutaneous afferents located around the heel. Neuroscience Letters, 2007, 415, 294-298.	2.1	12
62	Role of support afferentation in control of the tonic muscle activity. Acta Astronautica, 2007, 60, 285-294.	3.2	67
63	Effects of strength training, using a gravity-independent exercise system, performed during 110Âdays of simulated space station confinement. European Journal of Applied Physiology, 2003, 90, 44-49.	2.5	39