## Chiara Chiozzini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4384296/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Strong SARS-CoV-2 N-Specific CD8+ T Immunity Induced by Engineered Extracellular Vesicles Associates with Protection from Lethal Infection in Mice. Viruses, 2022, 14, 329.                                                        | 1.5 | 11        |
| 2  | Extracellular Vesicles and Their Use as Vehicles of Immunogens. Methods in Molecular Biology, 2022, 2504, 177-198.                                                                                                                 | 0.4 | 0         |
| 3  | Activation of Anti-SARS-CoV-2 Human CTLs by Extracellular Vesicles Engineered with the N Viral<br>Protein. Vaccines, 2022, 10, 1060.                                                                                               | 2.1 | 4         |
| 4  | Intrabodies targeting human papillomavirus 16 E6 and E7 oncoproteins for therapy of established HPV-associated tumors. Journal of Experimental and Clinical Cancer Research, 2021, 40, 37.                                         | 3.5 | 8         |
| 5  | Simultaneous CD8+ T-Cell Immune Response against SARS-Cov-2 S, M, and N Induced by Endogenously<br>Engineered Extracellular Vesicles in Both Spleen and Lungs. Vaccines, 2021, 9, 240.                                             | 2.1 | 20        |
| 6  | The C-Terminal Domain of Nefmut Is Dispensable for the CD8+ T Cell Immunogenicity of In Vivo<br>Engineered Extracellular Vesicles. Vaccines, 2021, 9, 373.                                                                         | 2.1 | 4         |
| 7  | Long-Term Antitumor CD8+ T Cell Immunity Induced by Endogenously Engineered Extracellular<br>Vesicles. Cancers, 2021, 13, 2263.                                                                                                    | 1.7 | 5         |
| 8  | Targeting Human Papillomavirus-Associated Cancer by Oncoprotein-Specific Recombinant Antibodies.<br>International Journal of Molecular Sciences, 2021, 22, 9143.                                                                   | 1.8 | 5         |
| 9  | Extracellular vesicle-mediated intercellular communication in HIV-1 infection and its role in the reservoir maintenance. Cytokine and Growth Factor Reviews, 2020, 51, 40-48.                                                      | 3.2 | 6         |
| 10 | KSHV G-protein coupled receptor vGPCR oncogenic signaling upregulation of Cyclooxygenase-2<br>expression mediates angiogenesis and tumorigenesis in Kaposi's sarcoma. PLoS Pathogens, 2020, 16,<br>e1009006.                       | 2.1 | 7         |
| 11 | N-Terminal Fatty Acids of NEFMUT Are Required for the CD8+ T-Cell Immunogenicity of In Vivo<br>Engineered Extracellular Vesicles. Vaccines, 2020, 8, 243.                                                                          | 2.1 | 8         |
| 12 | Engineered Extracellular Vesicles/Exosomes as a New Tool against Neurodegenerative Diseases.<br>Pharmaceutics, 2020, 12, 529.                                                                                                      | 2.0 | 11        |
| 13 | Anti-Cancer Vaccine for HPV-Associated Neoplasms: Focus on a Therapeutic HPV Vaccine Based on a<br>Novel Tumor Antigen Delivery Method Using Endogenously Engineered Exosomes. Cancers, 2019, 11, 138.                             | 1.7 | 30        |
| 14 | Tumor cells endowed with professional antigen-presenting cell functions prime PBLs to generate antitumor CTLs. Journal of Molecular Medicine, 2019, 97, 1139-1153.                                                                 | 1.7 | 4         |
| 15 | Role of Extracellular Vesicles in Human Papillomavirus-Induced Tumorigenesis. , 2019, , .                                                                                                                                          |     | 0         |
| 16 | <p>The Intracellular Delivery Of Anti-HPV16 E7 scFvs Through Engineered Extracellular Vesicles<br/>Inhibits The Proliferation Of HPV-Infected Cells</p> . International Journal of Nanomedicine, 2019,<br>Volume 14, 8755-8768.    | 3.3 | 18        |
| 17 | An Exosomeâ€Based Vaccine Platform Imparts Cytotoxic T Lymphocyte Immunity Against Viral Antigens.<br>Biotechnology Journal, 2018, 13, e1700443.                                                                                   | 1.8 | 77        |
| 18 | Engineered exosomes emerging from muscle cells break immune tolerance to HER2 in transgenic mice<br>and induce antigen-specific CTLs upon challenge by human dendritic cells. Journal of Molecular<br>Medicine, 2018, 96, 211-221. | 1.7 | 29        |

CHIARA CHIOZZINI

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | DNA Vectors Generating Engineered Exosomes Potential CTL Vaccine Candidates Against AIDS, Hepatitis<br>B, and Tumors. Molecular Biotechnology, 2018, 60, 773-782.                                                                             | 1.3 | 24        |
| 20 | Exosomes in Therapy: Engineering, Pharmacokinetics and Future Applications. Current Drug Targets, 2018, 20, 87-95.                                                                                                                            | 1.0 | 34        |
| 21 | Trans-dissemination of exosomes from HIV-1-infected cells fosters both HIV-1 trans-infection in resting CD4+ T lymphocytes and reactivation of the HIV-1 reservoir. Archives of Virology, 2017, 162, 2565-2577.                               | 0.9 | 11        |
| 22 | Antitumor HPV E7-specific CTL activity elicited by in vivo engineered exosomes produced through DNA inoculation. International Journal of Nanomedicine, 2017, Volume 12, 4579-4591.                                                           | 3.3 | 58        |
| 23 | The CD8+ T Cell-Mediated Immunity Induced by HPV-E6 Uploaded in Engineered Exosomes Is Improved by ISCOMATRIXTM Adjuvant. Vaccines, 2016, 4, 42.                                                                                              | 2.1 | 13        |
| 24 | Latent HIV-1 is activated by exosomes from cells infected with either replication-competent or defective HIV-1. Retrovirology, 2015, 12, 87.                                                                                                  | 0.9 | 77        |
| 25 | HIV-1 TAT and IMMUNE DYSREGULATION in AIDS PATHOGENESIS: a THERAPEUTIC TARGET. Current Drug Targets, 2015, 17, 33-45.                                                                                                                         | 1.0 | 19        |
| 26 | HPV-E7 Delivered by Engineered Exosomes Elicits a Protective CD8+ T Cell-Mediated Immune Response.<br>Viruses, 2015, 7, 1079-1099.                                                                                                            | 1.5 | 47        |
| 27 | Uncovering the role of defective HIV-1 in spreading viral infection. Future Virology, 2015, 10, 371-381.                                                                                                                                      | 0.9 | 1         |
| 28 | Surface-bound Tat inhibits antigen-specific CD8+ T-cell activation in an integrin-dependent manner.<br>Aids, 2014, 28, 2189-2200.                                                                                                             | 1.0 | 24        |
| 29 | Cell activation and HIV-1 replication in unstimulated CD4+T lymphocytes ingesting exosomes from cells expressing defective HIV-1. Retrovirology, 2014, 11, 46.                                                                                | 0.9 | 52        |
| 30 | <i>In vivo</i> antitumor effect of an intracellular singleâ€chain antibody fragment against the E7<br>oncoprotein of human papillomavirus 16. International Journal of Cancer, 2014, 134, 2742-2747.                                          | 2.3 | 27        |
| 31 | Exosomes from Human Immunodeficiency Virus Type 1 (HIV-1)-Infected Cells License Quiescent CD4<br><sup>+</sup> T Lymphocytes To Replicate HIV-1 through a Nef- and ADAM17-Dependent Mechanism.<br>Journal of Virology, 2014, 88, 11529-11539. | 1.5 | 140       |
| 32 | The HIV protease inhibitor indinavir down-regulates the expression of the pro-angiogenic MT1-MMP by human endothelial cells. Angiogenesis, 2014, 17, 831-838.                                                                                 | 3.7 | 13        |
| 33 | HIV-1 Nef Impairs Key Functional Activities in Human Macrophages through CD36 Downregulation. PLoS ONE, 2014, 9, e93699.                                                                                                                      | 1.1 | 16        |
| 34 | A Role for Virally Induced Reactive Oxygen Species in Kaposi's Sarcoma Herpesvirus Tumorigenesis.<br>Antioxidants and Redox Signaling, 2013, 18, 80-90.                                                                                       | 2,5 | 54        |
| 35 | HIV-1 Tat Promotes Integrin-Mediated HIV Transmission to Dendritic Cells by Binding Env Spikes and Competes Neutralization by Anti-HIV Antibodies. PLoS ONE, 2012, 7, e48781.                                                                 | 1.1 | 56        |
| 36 | Human immunodeficiency virus protease inhibitors reduce the growth of human tumors <i>via</i> a<br>proteasomeâ€independent block of angiogenesis and matrix metalloproteinases. International Journal<br>of Cancer, 2011, 128, 82-93.         | 2.3 | 40        |

CHIARA CHIOZZINI

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Anti-tumor CD8+ T cell immunity elicited by HIV-1-based virus-like particles incorporating HPV-16 E7 protein. Virology, 2009, 395, 45-55.                                                                                       | 1.1 | 39        |
| 38 | Immobilized HIVâ€1 Tat protein promotes gene transfer via a transactivationâ€independent mechanism<br>which requires binding of Tat to viral particles. Journal of Gene Medicine, 2009, 11, 955-965.                            | 1.4 | 26        |
| 39 | Primary Effusion Lymphoma Cells Undergoing Human Herpesvirus Type 8 Productive Infection Produce<br>C-Type Retroviral Particles. International Journal of Immunopathology and Pharmacology, 2008, 21,<br>999-1006.              | 1.0 | 4         |
| 40 | In Vivo-Restricted and Reversible Malignancy Induced by Human Herpesvirus-8 KSHV: A Cell and Animal<br>Model of Virally Induced Kaposi's Sarcoma. Cancer Cell, 2007, 11, 245-258.                                               | 7.7 | 148       |
| 41 | In Vivo-Restricted and Reversible Malignancy Induced by Human Herpesvirus-8 KSHV: A Cell and Animal<br>Model of Virally Induced Kaposi's Sarcoma. Cancer Cell, 2007, 11, 471.                                                   | 7.7 | 0         |
| 42 | Serum antibody response to Human papillomavirus (HPV) infections detected by a novel ELISA<br>technique based on denatured recombinant HPV16 L1, L2, E4, E6 and E7 proteins. Infectious Agents and<br>Cancer, 2006, 1, 6.       | 1.2 | 30        |
| 43 | HIV-1 Tat Regulates Endothelial Cell Cycle Progression via Activation of the Ras/ERK MAPK Signaling<br>Pathway. Molecular Biology of the Cell, 2006, 17, 1985-1994.                                                             | 0.9 | 66        |
| 44 | Intracellular anti-E7 human antibodies in single-chain format inhibit proliferation of HPV16-positive cervical carcinoma cells. International Journal of Cancer, 2005, 116, 564-570.                                            | 2.3 | 26        |
| 45 | Kaposi's sarcoma associated herpesvirus G protein-coupled receptor immortalizes human endothelial cells by activation of the VEGF receptor-2/ KDR. Cancer Cell, 2003, 3, 131-143.                                               | 7.7 | 221       |
| 46 | Human antibody response to Toscana virus glycoproteins expressed by recombinant baculovirus.<br>Journal of Medical Virology, 2002, 68, 615-619.                                                                                 | 2.5 | 13        |
| 47 | Clearance of Human Herpesvirus 8 from Blood and Regression of Leukopeniaâ€Associated Aggressive<br>Classic Kaposi's Sarcoma during Interferonâ€Î± Therapy: A Case Report. Clinical Infectious Diseases, 2001,<br>33, 1782-1785. | 2.9 | 7         |
| 48 | Activity of Toscana and Rift Valley fever virus transcription complexes on heterologous templates.<br>Journal of General Virology, 2001, 82, 781-785.                                                                           | 1.3 | 33        |
| 49 | Alpha Interferon Inhibits Human Herpesvirus 8 (HHV-8) Reactivation in Primary Effusion Lymphoma<br>Cells and Reduces HHV-8 Load in Cultured Peripheral Blood Mononuclear Cells. Journal of Virology,<br>1999, 73, 4029-4041.    | 1.5 | 70        |