Jochen Arlt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4384054/publications.pdf Version: 2024-02-01

ΙΟCΗΕΝ ΔΡΙΤ

#	Article	IF	CITATIONS
1	Probing the dynamics of turbid colloidal suspensions using differential dynamic microscopy. Soft Matter, 2022, 18, 1858-1867.	2.7	6
2	Run-to-Tumble Variability Controls the Surface Residence Times of <i>E. coli</i> Bacteria. Physical Review Letters, 2022, 128, .	7.8	12
3	Particle sizing for flowing colloidal suspensions using flow-differential dynamic microscopy. Soft Matter, 2021, 17, 3945-3953.	2.7	5
4	Characterising shear-induced dynamics in flowing complex fluids using differential dynamic microscopy. Soft Matter, 2021, 17, 8838-8849.	2.7	4
5	Dynamic and static quenching of 2-aminopurine fluorescence by the natural DNA nucleotides in solution. Methods and Applications in Fluorescence, 2020, 8, 025002.	2.3	32
6	A combined rheometry and imaging study of viscosity reduction in bacterial suspensions. Proceedings of the United States of America, 2020, 117, 2326-2331.	7.1	42
7	Anisotropic dynamics and kinetic arrest of dense colloidal ellipsoids in the presence of an external field studied by differential dynamic microscopy. Science Advances, 2020, 6, eaaw9733.	10.3	27
8	Dynamic optical rectification and delivery of active particles. Soft Matter, 2019, 15, 7026-7032.	2.7	7
9	Spontaneous shrinking of soft nanoparticles boosts their diffusion in confined media. Nature Communications, 2019, 10, 4294.	12.8	26
10	Dynamics-dependent density distribution in active suspensions. Nature Communications, 2019, 10, 2321.	12.8	28
11	High-throughput characterisation of bull semen motility using differential dynamic microscopy. PLoS ONE, 2019, 14, e0202720.	2.5	12
12	Painting with light-powered bacteria. Nature Communications, 2018, 9, 768.	12.8	116
13	Bacteria as living patchy colloids: Phenotypic heterogeneity in surface adhesion. Science Advances, 2018, 4, eaao1170.	10.3	48
14	In vivo single cell analysis reveals Gata2 dynamics in cells transitioning to hematopoietic fate. Journal of Experimental Medicine, 2018, 215, 233-248.	8.5	37
15	Probing the Spatiotemporal Dynamics of Catalytic Janus Particles with Single-Particle Tracking and Differential Dynamic Microscopy. Physical Review Letters, 2018, 121, 078001.	7.8	72
16	Tricarbocyanine <i>N</i> -triazoles: the scaffold-of-choice for long-term near-infrared imaging of immune cells <i>in vivo</i> . Chemical Science, 2018, 9, 7261-7270.	7.4	48
17	Ureasil organic–inorganic hybrids as photoactive waveguides for conjugated polyelectrolyte luminescent solar concentrators. Materials Chemistry Frontiers, 2017, 1, 2271-2282.	5.9	18
18	Single cells undergoing cell fate change during endothelial-to-hematopoietic cell transition show pulsatile Gata2 expression. Experimental Hematology, 2017, 53, S43.	0.4	0

#	Article	IF	CITATIONS
19	Tunable Whiteâ€Light Emission from Conjugated Polymerâ€Diâ€Ureasil Materials. Advanced Functional Materials, 2016, 26, 532-542.	14.9	33
20	Targeted design leads to tunable photoluminescence from perylene dicarboxdiimide–poly(oxyalkylene)/siloxane hybrids for luminescent solar concentrators. Journal of Materials Chemistry C, 2016, 4, 4049-4059.	5.5	23
21	Escherichia coli as a model active colloid: A practical introduction. Colloids and Surfaces B: Biointerfaces, 2016, 137, 2-16.	5.0	99
22	Synergistic photoluminescence enhancement in conjugated polymer-di-ureasil organic–inorganic composites. Chemical Science, 2015, 6, 7227-7237.	7.4	27
23	Filling an Emulsion Drop with Motile Bacteria. Physical Review Letters, 2014, 113, 268101.	7.8	61
24	Taking Two-Photon Excitation to Exceptional Path-Lengths in Photonic Crystal Fiber. ACS Photonics, 2014, 1, 790-793.	6.6	9
25	Switching of Swimming Modes in Magnetospirillium gryphiswaldense. Biophysical Journal, 2014, 106, 37-46.	0.5	29
26	A study of pile-up in integrated time-correlated single photon counting systems. Review of Scientific Instruments, 2013, 84, 103105.	1.3	71
27	Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays. Sensors, 2012, 12, 5650-5669.	3.8	51
28	A High-Throughput Time-Resolved Mini-Silicon Photomultiplier With Embedded Fluorescence Lifetime Estimation in 0.13 <formula formulatype="inline"> <tex Notation="TeX">\$mu\$</tex </formula> m CMOS. IEEE Transactions on Biomedical Circuits and Systems, 2012, 6, 562-570.	4.0	69
29	A 100Mphoton/s time-resolved mini-silicon photomultiplier with on-chip fluorescence lifetime estimation in 0.13μm CMOS imaging technology. , 2012, , .		11
30	Colloids in a bacterial bath: simulations and experiments. Soft Matter, 2011, 7, 5228.	2.7	99
31	Optically trapped microsensors for microfluidic temperature measurement by fluorescence lifetime imaging microscopy. Lab on A Chip, 2011, 11, 3821.	6.0	62
32	Changes to lipid droplet configuration in mCMV-infected fibroblasts: live cell imaging with simultaneous CARS and two-photon fluorescence microscopy. Biomedical Optics Express, 2011, 2, 2504.	2.9	12
33	Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm. Journal of Biomedical Optics, 2011, 16, 1.	2.6	89
34	Intracellular imaging of hostâ€pathogen interactions using combined CARS and twoâ€photon fluorescence microscopies. Journal of Biophotonics, 2010, 3, 138-146.	2.3	19
35	Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method. Journal of Biomedical Optics, 2010, 15, 017006.	2.6	49
36	Fluorescence lifetime biosensing with DNA microarrays and a CMOS-SPAD imager. Biomedical Optics Express, 2010, 1, 1302.	2.9	29

#	Article	IF	CITATIONS
37	Real-time fluorescence lifetime imaging system with a 32 × 32 013μm CMOS low dark-count single-photon avalanche diode array. Optics Express, 2010, 18, 10257.	3.4	108
38	Passive and Active Microrheology of Hard-sphere Colloids. Journal of Physical Chemistry B, 2009, 113, 3806-3812.	2.6	88
39	Trapping multiple particles in single optical tweezers. Optics Communications, 2008, 281, 135-140.	2.1	28
40	Optical tweezer micromanipulation of filamentous fungi. Fungal Genetics and Biology, 2007, 44, 1-13.	2.1	38
41	Experimentally manipulating fungi with optical tweezers*. Mycoscience, 2007, 48, 15-19.	0.8	13
42	Time-Multiplexed Laguerre-Gaussian holographic optical tweezers for biological applications. Optics Express, 2006, 14, 3065.	3.4	49
43	Multiple trap Laguerre-Gaussian holographic optical tweezers using a multiplexed ferroelectric SLM. , 2006, , .		0
44	Linear and nonlinear microrheology of dense colloidal suspensions. , 2006, , .		0
45	Hydrodynamics of bacterial suspensions. , 2005, , .		0
46	Force measurement in colloidal glasses using optical tweezers. , 2005, , .		0
47	Spectral imaging in a snapshot. , 2005, , .		20
48	Measuring fungal growth forces with optical tweezers. , 2005, , .		1
49	Cell Biology of Conidial Anastomosis Tubes in Neurospora crassa. Eukaryotic Cell, 2005, 4, 911-919.	3.4	157
50	Spherical aberration correction for optical tweezers. , 2004, , .		1
51	Single Molecule Fluorescence Imaging and Its Application to the Study of DNA Condensation. Journal of Fluorescence, 2004, 14, 65-69.	2.5	8
52	Spherical aberration correction for optical tweezers. Optics Communications, 2004, 236, 145-150.	2.1	64
53	Study of DNA deformation under flow using optical tweezers. , 2004, , .		0
54	Condensation of hydrodynamically stretched DNA using single-molecule fluorescence imaging and optical tweezers. , 2004, , .		1

#	Article	IF	CITATIONS
55	Handedness and azimuthal energy flow of optical vortex beams. Journal of Modern Optics, 2003, 50, 1573-1580.	1.3	92
56	<title>Laguerre-Gaussian laser modes for biophotonics and micromanipulation</title> ., 2003, 5147, 48.		1
57	Continuous motion of interference patterns using the angular Doppler effect. , 2003, 5121, 98.		1
58	Aberration corrected fully steerable optical tweezers. , 2003, , .		0
59	Handedness and azimuthal energy flow of optical vortex beams. Journal of Modern Optics, 2003, 50, 1573-1580.	1.3	0
60	Moving interference patterns created using the angular Doppler-effect. Optics Express, 2002, 10, 844.	3.4	36
61	Orbital angular momentum of a high-order Bessel light beam. Journal of Optics B: Quantum and Semiclassical Optics, 2002, 4, S82-S89.	1.4	357
62	Creation and Manipulation of Three-Dimensional Optically Trapped Structures. Science, 2002, 296, 1101-1103.	12.6	481
63	Revolving interference patterns for the rotation of optically trapped particles. Optics Communications, 2002, 201, 21-28.	2.1	88
64	Guiding a cold atomic beam along a co-propagating and oblique hollow light guide. Optics Communications, 2002, 214, 247-254.	2.1	39
65	Controlled Rotation of Optically Trapped Microscopic Particles. Science, 2001, 292, 912-914.	12.6	960
66	Optical dipole traps and atomic waveguides based on Bessel light beams. Physical Review A, 2001, 63, .	2.5	118
67	Optical micromanipulation using a Bessel light beam. Optics Communications, 2001, 197, 239-245.	2.1	531
68	Beth's experiment using optical tweezers. American Journal of Physics, 2001, 69, 271-276.	0.7	32
69	Spatial transformation of Laguerre-Gaussian laser modes. Journal of Modern Optics, 2001, 48, 783-787.	1.3	24
70	Generation of high-order Bessel beams by use of an axicon. Optics Communications, 2000, 177, 297-301.	2.1	710
71	Atom guiding along Laguerre-Gaussian and Bessel light beams. Applied Physics B: Lasers and Optics, 2000, 71, 549-554.	2.2	190
72	Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam. Optics Letters, 2000, 25, 191.	3.3	415

#	Article	IF	CITATIONS
73	Toroidal optical dipole traps for atomic Bose-Einstein condensates using Laguerre-Gaussian beams. Physical Review A, 2000, 63, .	2.5	141
74	An experiment to study a "nondiffracting―light beam. American Journal of Physics, 1999, 67, 912-915.	0.7	57
75	A polarisation spectrometer locked diode laser for trapping cold atoms. Optics Communications, 1999, 170, 79-84.	2.1	26
76	The generation of Bessel beams at millimetre-wave frequencies by use of an axicon. Optics Communications, 1999, 170, 213-215.	2.1	116
77	Efficiency of second-harmonic generation with Bessel beams. Physical Review A, 1999, 60, 2438-2441.	2.5	49
78	Parametric down-conversion for light beams possessing orbital angular momentum. Physical Review A, 1999, 59, 3950-3952.	2.5	105
79	The production of multiringed Laguerre–Gaussian modes by computer-generated holograms. Journal of Modern Optics, 1998, 45, 1231-1237.	1.3	269
80	High-order Laguerre–Gaussian laser modes for studies of cold atoms. Optics Communications, 1998, 156, 300-306.	2.1	121
81	Coherent Pulse Propagation and the Dynamics of Rydberg Wave Packets. Physical Review Letters, 1997, 79, 4774-4777.	7.8	15
82	An experiment to observe the intensity and phase structure of Laguerre–Gaussian laser modes. American Journal of Physics, 1996, 64, 77-82.	0.7	219
83	Toroidal optical dipole traps for two-dimensional Bose-Einstein condensates. , 0, , .		0