Yipeng Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4383685/publications.pdf Version: 2024-02-01

YIDENC GAO

#	Article	IF	CITATIONS
1	Ordering in liquid and its heredity impact on phase transformation of Mg-Al-Ca alloys. Journal of Magnesium and Alloys, 2023, 11, 2006-2017.	11.9	12
2	Enhanced twinning-induced plasticity effect by novel {315}α″/{332}β correlated deformation twins in a Ti-Nb alloy. International Journal of Plasticity, 2022, 148, 103132.	8.8	11
3	Enhanced strength-ductility synergy achieved through twin boundary pinning in a bake-hardened Mg–2Zn-0.5Ca alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142239.	5.6	14
4	Rapid dislocation-mediated solute repartitioning towards strain-aging hardening in a fine-grained dilute magnesium alloy. Materials Research Letters, 2022, 10, 21-28.	8.7	17
5	The effect of elastic anisotropy on the symmetry selection of irradiation-induced void superlattices in cubic metals. Computational Materials Science, 2022, 206, 111252.	3.0	3
6	Enhanced superplasticity achieved by disclination-dislocation reactions in a fine-grained low-alloyed magnesium system. International Journal of Plasticity, 2022, 154, 103300.	8.8	27
7	H-phase precipitation and its effects on martensitic transformation in NiTi-Hf high-temperature shape memory alloys. Acta Materialia, 2021, 208, 116651.	7.9	24
8	Recent Advances in the Design of Novel βâ€ītanium Alloys Using Integrated Theory, Computer Simulation, and Advanced Characterization. Advanced Engineering Materials, 2021, 23, 2100152.	3.5	6
9	Enhanced ductility of Mg–1Zn–0.2Zr alloy with dilute Ca addition achieved by activation of non-basal slip and twinning. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 813, 141128.	5.6	19
10	Regulation of Cathode Mass and Charge Transfer by Structural 3D Engineering for Protonic Ceramic Fuel Cell at 400°C. Advanced Functional Materials, 2021, 31, 2102907.	14.9	21
11	Defect dynamics in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si25.svg"><mml:mi>γ</mml:mi></mml:math> -U, Mo, and their alloys. Journal of Nuclear Materials, 2021, 549, 152893.	2.7	3
12	Dissociated prismatic loop punching by bubble growth in FCC metals. Scientific Reports, 2021, 11, 12839.	3.3	8
13	Regulation of Cathode Mass and Charge Transfer by Structural 3D Engineering for Protonic Ceramic Fuel Cell at 400°C (Adv. Funct. Mater. 33/2021). Advanced Functional Materials, 2021, 31, 2170244.	14.9	2
14	The role of nano-scaled structural non-uniformities on deformation twinning and stress-induced transformation in a cold rolled multifunctional β-titanium alloy. Scripta Materialia, 2020, 177, 181-185.	5.2	45
15	Shuffle-nanodomain regulated strain glass transition in Ti-24Nb-4Zr-8Sn alloy. Acta Materialia, 2020, 186, 415-424.	7.9	52
16	A improved equation of state for Xe gas bubbles in γU-Mo fuels. Journal of Nuclear Materials, 2020, 530, 151961.	2.7	13
17	Linear-superelastic metals by controlled strain release via nanoscale concentration-gradient engineering. Materials Today, 2020, 33, 17-23.	14.2	33
18	Intrinsic coupling between twinning plasticity and transformation plasticity in metastable β Ti-alloys: A symmetry and pathway analysis. Acta Materialia, 2020, 196, 488-504.	7.9	24

YIPENG GAO

#	Article	IF	CITATIONS
19	Disordering of helium gas bubble superlattices in molybdenum under ion irradiation and thermal annealing. Journal of Nuclear Materials, 2020, 539, 152315.	2.7	6
20	Determination of twinning path from broken symmetry: A revisit to deformation twinning in bcc metals. Acta Materialia, 2020, 196, 280-294.	7.9	23
21	Phase Transformation Graph and Transformation Pathway Engineering for Shape Memory Alloys. Shape Memory and Superelasticity, 2020, 6, 115-130.	2.2	7
22	Novel deformation twinning system in a cold rolled high-strength metastable-β Ti-5Al-5V-5Mo-3Cr-0.5Fe alloy. Materialia, 2020, 9, 100614.	2.7	21
23	A Cayley graph description of the symmetry breaking associated with deformation and structural phase transitions in metallic materials. Materialia, 2020, 9, 100588.	2.7	6
24	Twinning path determined by broken symmetry: A revisit to deformation twinning in hexagonal close-packed titanium and zirconium. Physical Review Materials, 2020, 4, .	2.4	3
25	Defect-free plastic deformation through dimensionality reduction and self-annihilation of topological defects in crystalline solids. Physical Review Research, 2020, 2, .	3.6	1
26	Symmetry breaking during defect self-organization under irradiation. Materials Theory, 2020, 4, .	4.3	7
27	Bifurcation and Pattern Symmetry Selection in Reaction-Diffusion Systems with Kinetic Anisotropy. Scientific Reports, 2019, 9, 7835.	3.3	6
28	Making metals linear super-elastic with ultralow modulus and nearly zero hysteresis. Materials Horizons, 2019, 6, 515-523.	12.2	27
29	Symmetry and pathway analyses of the twinning modes in Ni–Ti shape memory alloys. Materialia, 2019, 6, 100320.	2.7	19
30	A generalized O-element approach for analyzing interface structures. Acta Materialia, 2019, 165, 508-519.	7.9	5
31	Deformation pathway and defect generation in crystals: a combined group theory and graph theory description. IUCrJ, 2019, 6, 96-104.	2.2	12
32	Formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation. Scripta Materialia, 2018, 149, 26-30.	5.2	12
33	Theoretical prediction and atomic kinetic Monte Carlo simulations of void superlattice self-organization under irradiation. Scientific Reports, 2018, 8, 6629.	3.3	27
34	A Revisit to the Notation of Martensitic Crystallography. Crystals, 2018, 8, 349.	2.2	5
35	Thermal stability of helium bubble superlattice in Mo under TEM in-situ heating. Journal of Nuclear Materials, 2018, 505, 207-211.	2.7	6
36	An atomistic study of grain boundaries and surfaces in γU-Mo. Journal of Nuclear Materials, 2018, 507, 248-257.	2.7	6

YIPENG GAO

#	Article	IF	CITATIONS
37	Grand-potential-based phase-field model for multiple phases, grains, and chemical components. Physical Review E, 2018, 98, 023309.	2.1	40
38	Formation and self-organization of void superlattices under irradiation: A phase field study. Materialia, 2018, 1, 78-88.	2.7	39
39	<i>Ab initio</i> theory of noble gas atoms in bcc transition metals. Physical Chemistry Chemical Physics, 2018, 20, 17048-17058.	2.8	9
40	Self-organized multigrain patterning with special grain boundaries produced by phase transformation cycling. Physical Review Materials, 2018, 2, .	2.4	13
41	Hidden pathway during fcc to bcc/bct transformations: Crystallographic origin of slip martensite in steels. Physical Review Materials, 2018, 2, .	2.4	7
42	Non-conservative dynamics of lattice sites near a migrating interface in a diffusional phase transformation. Acta Materialia, 2017, 127, 481-490.	7.9	9
43	A universal symmetry criterion for the design of high performance ferroic materials. Acta Materialia, 2017, 127, 438-449.	7.9	42
44	Monte Carlo simulation of magnetic domain structure and magnetic properties near the morphotropic phase boundary. Physical Chemistry Chemical Physics, 2017, 19, 7236-7244.	2.8	5
45	Taming martensitic transformation via concentration modulation at nanoscale. Acta Materialia, 2017, 130, 196-207.	7.9	52
46	Mechanical behavior and microstructural analysis of NiTi-40Au shape memory alloys exhibiting work output above 400°C. Intermetallics, 2017, 86, 33-44.	3.9	27
47	An origin of functional fatigue of shape memory alloys. Acta Materialia, 2017, 126, 389-400.	7.9	77
48	Simulation study on exchange interaction and unique magnetization near ferromagnetic morphotropic phase boundary. Journal of Physics Condensed Matter, 2017, 29, 445802.	1.8	2
49	Crystallographic analysis and phase field simulation of transformation plasticity in a multifunctional β-Ti alloy. International Journal of Plasticity, 2017, 89, 110-129.	8.8	31
50	Effects of the austenitizing temperature on the mechanical properties of cold-rolled medium-Mn steel system. Journal of Alloys and Compounds, 2017, 691, 51-59.	5.5	41
51	Practical verifiably encrypted signatures based on discrete logarithms. Security and Communication Networks, 2016, 9, 5996-6003.	1.5	5
52	Defect strength and strain glass state in ferroelastic systems. Journal of Alloys and Compounds, 2016, 661, 100-109.	5.5	31
53	Pattern formation during interfacial reaction in-between liquid Sn and Cu substrates – A simulation study. Acta Materialia, 2016, 113, 245-258.	7.9	22
54	Group theory description of transformation pathway degeneracy in structural phase transformations. Acta Materialia, 2016, 109, 353-363.	7.9	49

YIPENG GAO

#	Article	IF	CITATIONS
55	Guided Self-Assembly of Nano-Precipitates into Mesocrystals. Scientific Reports, 2015, 5, 16530.	3.3	12
56	Certificateâ€based verifiably encrypted RSA signatures. Transactions on Emerging Telecommunications Technologies, 2015, 26, 276-289.	3.9	5
57	Certificate-based Fair Exchange Protocol of Schnorr Signatures in Chosen-key Model. Fundamenta Informaticae, 2015, 141, 95-114.	0.4	1
58	Practical verifiably encrypted signature based on Waters signatures. IET Information Security, 2015, 9, 185-193.	1.7	3
59	Phase-Field Simulation of Orowan Strengthening by Coherent Precipitate Plates in an Aluminum Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 3287-3301.	2.2	41
60	Austenite grain refinement during load-biased thermal cycling of a Ni49.9Ti50.1 shape memory alloy. Acta Materialia, 2015, 91, 318-329.	7.9	37
61	Pattern formation during cubic to orthorhombic martensitic transformations in shape memory alloys. Acta Materialia, 2014, 68, 93-105.	7.9	42
62	Practical verifiably encrypted signatures without random oracles. Information Sciences, 2014, 278, 793-801.	6.9	2
63	A simulation study of β 1 precipitation on dislocations in an Mg–rare earth alloy. Acta Materialia, 2014, 77, 133-150.	7.9	60
64	A Provably Secure Signature Scheme based on Factoring and Discrete Logarithms. Applied Mathematics and Information Sciences, 2014, 8, 1553-1558.	0.5	8
65	A simulation study of the shape of β′ precipitates in Mg–Y and Mg–Cd alloys. Acta Materialia, 2013, 61, 453-466.	7.9	150
66	Nano <i>γ′/γ</i> ″ composite precipitates in Alloy 718. Applied Physics Letters, 2012, 100, .	3.3	33
67	Microstructure Map for Self-Organized Phase Separation during Film Deposition. Physical Review Letters, 2012, 109, 086101.	7.8	49
68	Simulation study of precipitation in an Mg–Y–Nd alloy. Acta Materialia, 2012, 60, 4819-4832.	7.9	84
69	P-phase precipitation and its effect on martensitic transformation in (Ni,Pt)Ti shape memory alloys. Acta Materialia, 2012, 60, 1514-1527.	7.9	50