Yoshihisa Yamamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4383122/publications.pdf

Version: 2024-02-01

231 papers 23,651 citations

74 h-index

9264

7518 151 g-index

234 all docs

234 docs citations

times ranked

234

12578 citing authors

#	Article	IF	CITATIONS
1	Efficient sampling of ground and low-energy Ising spin configurations with a coherent Ising machine. Physical Review Research, 2022, 4, .	3.6	11
2	LO regularization-based compressed sensing with quantum–classical hybrid approach. Quantum Science and Technology, 2022, 7, 035013.	5.8	5
3	Potts model solver based on hybrid physical and digital architecture. Communications Physics, 2022, 5,	5.3	7
4	Control of amplitude homogeneity in coherent Ising machines with artificial Zeeman terms. Communications Physics, 2022, 5, .	5. 3	6
5	Entanglement and Photon Anti-Bunching in Coupled Non-Degenerate Parametric Oscillators. Entropy, 2021, 23, 624.	2.2	4
6	Coherent Ising Machines with Optical Error Correction Circuits. Advanced Quantum Technologies, 2021, 4, 2100077.	3.9	12
7	Recent Progress in Coherent Ising Machines. , 2021, , .		0
8	Coherent Ising machinesâ€"Quantum optics and neural network Perspectives. Applied Physics Letters, 2020, 117, .	3.3	26
9	Coherent Ising Machines with Error Correction Feedback. Advanced Quantum Technologies, 2020, 3, 2000045.	3.9	20
10	Entanglement and quantum discord in optically coupled coherent Ising machines. Physical Review A, 2020, 102, .	2.5	5
11	Destabilization of Local Minima in Analog Spin Systems by Correction of Amplitude Heterogeneity. Physical Review Letters, 2019, 122, 040607.	7.8	57
12	Experimental investigation of performance differences between coherent Ising machines and a quantum annealer. Science Advances, 2019, 5, eaau0823.	10.3	169
13	Quantum information science and technology in Japan. Quantum Science and Technology, 2019, 4, 020502.	5.8	33
14	Towards Large-Scale Photonic Neural-Network Accelerators. , 2019, , .		10
15	Boltzmann sampling for an XY model using a non-degenerate optical parametric oscillator network. Quantum Science and Technology, 2018, 3, 014004.	5.8	30
16	Statistical mechanics of CDMA multiuser detector implemented in coherent Ising machine. Journal of Applied Physics, 2018, 124, 233102.	2.5	6
17	Optical Neural Network operating at the Quantum Limit - Coherent Ising/XY/Recurrent Neural Network Machines , 2018, , .		2
18	Transient Oscillatory Behaviors of Polariton Condensates. Journal of the Physical Society of Japan, 2018, 87, 094401.	1.6	3

#	Article	IF	Citations
19	Critical memory capacity of Hopfield model implemented in coherent Ising machine. Journal of Applied Physics, 2018, 124, 152129.	2.5	3
20	Quantum vs. Optical Annealing: Benchmarking the OPO Ising Machine and D-Wave. , $2018, \ldots$		2
21	Community detection by laser network dynamics. Journal of Physics Communications, 2018, 2, 015005.	1.2	2
22	Coherent Ising Machine - Optical Neural Network operating at the Quantum Limit. , 2018, , .		0
23	Combinatorial optimization using dynamical phase transitions in driven-dissipative systems. Physical Review E, 2017, 95, 022118.	2.1	40
24	Exciton-Polariton Quantum Simulators. Quantum Science and Technology, 2017, , 91-121.	2.6	3
25	Universal logic gates for quantum-dot electron-spin qubits using trapped quantum-well exciton polaritons. Physical Review B, 2017, 95, .	3.2	4
26	Large-scale artificial spin network based on time-multiplexed degenerate optical parametric oscillators for coherent Ising machine. Proceedings of SPIE, 2017, , .	0.8	0
27	Quantum model for coherent Ising machines: Stochastic differential equations with replicator dynamics. Physical Review A, 2017, 96, .	2.5	22
28	Quantum model for coherent Ising machines: Discrete-time measurement feedback formulation. Physical Review A, 2017, 96, .	2.5	33
29	Highly excited exciton-polariton condensates. Physical Review B, 2017, 95, .	3.2	18
30	Coherent Ising machinesâ€"optical neural networks operating at the quantum limit. Npj Quantum Information, 2017, 3, .	6.7	120
31	Combinatorial optimization using networks of optical parametric oscillators. , 2017, , .		1
32	Performance evaluation of coherent Ising machines against classical neural networks. Quantum Science and Technology, 2017, 2, 044002.	5.8	34
33	Boltzmann sampling for an XY model using a non-degenerate optical parametric oscillator network. , 2017, , .		0
34	Computational Principle and Performance Evaluation of Coherent Ising Machine Based on Degenerate Optical Parametric Oscillator Network. Entropy, 2016, 18, 151.	2.2	32
35	Boltzmann Sampling by Degenerate Optical Parametric Oscillator Network for Structure-Based Virtual Screening. Entropy, 2016, 18, 365.	2.2	31
36	Reduced models and design principles for half-harmonic generation in synchronously pumped optical parametric oscillators. Physical Review A, 2016, 94, .	2.5	30

#	Article	IF	Citations
37	Crossover from polariton lasing to exciton lasing in a strongly coupled ZnO microcavity. Scientific Reports, 2016, 6, 20581.	3.3	19
38	Large-scale Ising spin network based on degenerate optical parametric oscillators. Nature Photonics, 2016, 10, 415-419.	31.4	174
39	Physics and applications of exciton–polariton lasers. Nature Materials, 2016, 15, 1049-1052.	27.5	70
40	Truncated Wigner theory of coherent Ising machines based on degenerate optical parametric oscillator network. Physica Scripta, 2016, 91, 083010.	2.5	30
41	Spatial correlation of two-dimensional bosonic multimode condensates. Physical Review A, 2016, 93, .	2.5	6
42	Topological defect formation in 1D and 2D spin chains realized by network of optical parametric oscillators. International Journal of Modern Physics B, 2016, 30, 1630014.	2.0	31
43	A fully programmable 100-spin coherent Ising machine with all-to-all connections. Science, 2016, 354, 614-617.	12.6	427
44	A 16-bit Coherent Ising Machine for One-Dimensional Ring and Cubic Graph Problems. Scientific Reports, 2016, 6, 34089.	3.3	60
45	High-energy side-peak emission of exciton-polariton condensates in high density regime. Scientific Reports, 2016, 6, 25655.	3.3	27
46	Initialization of a spin qubit in a site-controlled nanowire quantum dot. New Journal of Physics, 2016, 18, 053024.	2.9	13
47	High-Orbital Exciton-Polariton Condensation: Towards Quantum-Simulator Applications. Lecture Notes in Physics, 2016, , 363-384.	0.7	1
48	Spin-Photon Entanglement in Semiconductor Quantum Dots: Towards Solid-State-Based Quantum Repeaters. Lecture Notes in Physics, 2016, , 71-89.	0.7	1
49	Coherent Computing with Injection-Locked Laser Network. Lecture Notes in Physics, 2016, , 185-217.	0.7	0
50	A Coherent Ising Machine for MAX-CUT Problems: Performance Evaluation against Semidefinite Programming and Simulated Annealing. Lecture Notes in Physics, 2016, , 251-262.	0.7	31
51	Bose-Einstein Condensation: A Platform for Quantum Simulation Experiments. Lecture Notes in Physics, 2016, , 265-307.	0.7	0
52	A Degenerate Optical Parametric Oscillator Network for Coherent Computation. Lecture Notes in Physics, 2016, , 219-249.	0.7	1
53	Quantum correlation in degenerate optical parametric oscillators with mutual injections. Physical Review A, 2015, 92, .	2.5	41
54	An electrically pumped polariton laser. , 2015, , .		1

#	Article	IF	CITATIONS
55	Verification of very strong coupling in a semiconductor optical microcavity. New Journal of Physics, 2015, 17, 023064.	2.9	5
56	Binary phase oscillation of two mutually coupled semiconductor lasers. Optics Express, 2015, 23, 6029.	3.4	14
57	Generating functional approach for spontaneous coherence in semiconductor electron-hole-photon systems. Physical Review B, 2015, 91, .	3.2	16
58	Spatial and temporal dynamics of the crossover from exciton–polariton condensation to photon lasing. Japanese Journal of Applied Physics, 2015, 54, 092801.	1.5	2
59	Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits. Nature Communications, 2015, 6, 8955.	12.8	31
60	Background-free Quantum Frequency Downconversion for Two-photon Interference of Heterogeneous Photon Sources., 2015,,.		0
61	Optical Pumping of Individual Spins in Self-Assembled and Site-Controlled Quantum Dots., 2015,,.		0
62	Simulating one-dimensional Ising spins with optically-coupled time-division-multiplexed optical parametric oscillators. , 2015, , .		2
63	Algebraic order and the Berezinskii-Kosterlitz-Thouless transition in an exciton-polariton gas. Physical Review B, 2014, 90, .	3.2	53
64	Photoluminescence of high-density exciton-polariton condensates. Physical Review B, 2014, 90, .	3.2	10
65	Effective interaction and condensation of dipolaritons in coupled quantum wells. Physical Review B, 2014, 90, .	3.2	34
66	f-band condensates in exciton-polariton lattice systems. Physical Review B, 2014, 89, .	3.2	8
67	Data search by a coherent Ising machine based on an injection-locked laser network with gradual pumping or coupling. Physical Review A, 2014, 89, .	2.5	9
68	Network of time-multiplexed optical parametric oscillators as a coherent Ising machine. Nature Photonics, 2014, 8, 937-942.	31.4	339
69	Single-shot quantum nondemolition measurement of a quantum-dot electron spin using cavity exciton-polaritons. Physical Review B, 2014, 90, .	3.2	10
70	Practical quantum key distribution protocol without monitoring signal disturbance. Nature, 2014, 509, 475-478.	27.8	262
71	Exciton–polariton condensates. Nature Physics, 2014, 10, 803-813.	16.7	518
72	Ferminoic Physics in Dipolariton Condensates. Physical Review Letters, 2014, 112, 116401.	7.8	7

#	Article	IF	Citations
73	Fast, High Fidelity, Single-Shot Quantum Non-Demolition Measurement of a Quantum Dot Electron Spin using Cavity Exciton-Polariton Resonance., 2014,,.		O
74	Second Thresholds in BEC-BCS-Laser Crossover of Exciton-Polariton Systems. Physical Review Letters, 2013, 111, 026404.	7.8	54
75	Complete tomography of a high-fidelity solid-state entangled spin–photon qubit pair. Nature Communications, 2013, 4, 2228.	12.8	31
76	Ultrafast optical control of individual quantum dot spin qubits. Reports on Progress in Physics, 2013, 76, 092501.	20.1	59
77	Single spins in semiconductor quantum dot microcavities. , 2013, , .		0
78	Optical Pumping of a Single Electron Spin Bound to a Fluorine Donor in a ZnSe Nanostructure. Nano Letters, 2013, 13, 116-120.	9.1	24
79	Photoluminescence of a microcavity quantum dot system in the quantum strong-coupling regime. Scientific Reports, 2013, 3, 1180.	3.3	26
80	Unconditional generation of bright coherent non-Gaussian light from exciton-polariton condensates. Physical Review B, 2013, 87, .	3.2	9
81	Very strong coupling in GaAs-based optical microcavities. Physical Review B, 2013, 87, .	3.2	11
82	An electrically pumped polariton laser. Nature, 2013, 497, 348-352.	27.8	420
83	Degenerate high-orbital microcavity exciton-polariton condensates in a lattice. , 2013, , .		0
84	Temperature Dependence of Highly Excited Exciton Polaritons in Semiconductor Microcavities. Journal of the Physical Society of Japan, 2013, 82, 084709.	1.6	18
85	Coherent Ising machine based on degenerate optical parametric oscillators. Physical Review A, 2013, 88,	2.5	226
86	Stochastic formation of polariton condensates in two degenerate orbital states. Physical Review B, 2013, 87, .	3.2	30
87	Neural networks using two-component Bose-Einstein condensates. Scientific Reports, 2013, 3, 2531.	3.3	16
88	Exciton-Polariton Condensates in Zero-, One-, and Two-Dimensional Lattices. Springer Series in Solid-state Sciences, 2013, , 157-175.	0.3	4
89	Exciton-Polariton Mediated Universal Quantum Computing. , 2013, , .		1
90	Ultrafast downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel. , 2013, , .		0

#	Article	IF	Citations
91	Observation of BKT Transition in BEC of Exciton-Polaritons in a Semiconductor Microcavity. , 2013, , .		O
92	Exciton–polariton condensates with flat bands in a two-dimensional kagome lattice. New Journal of Physics, 2012, 14, 065002.	2.9	97
93	GaN-based microcavity polariton light emitting diodes. , 2012, , .		0
94	Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel. Optics Express, 2012, 20, 27510.	3.4	57
95	Layered Architecture for Quantum Computing. Physical Review X, 2012, 2, .	8.9	182
96	Transient time of an Ising machine based on injection-locked laser network. New Journal of Physics, 2012, 14, 013052.	2.9	34
97	Fault-tolerant quantum repeaters for long-distance quantum communication based on quantum dots. , 2012, , .		0
98	Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength. Nature, 2012, 491, 421-425.	27.8	423
99	Entangling Single Photons from Independently Tuned Semiconductor Nanoemitters. Nano Letters, 2012, 12, 4611-4616.	9.1	21
100	Quantum Computing vs. Coherent Computing. New Generation Computing, 2012, 30, 327-356.	3.3	5
101	Negative Bogoliubov dispersion in exciton-polariton condensates. Physical Review B, 2012, 85, .	3.2	40
102	Two-qubit geometric phase gate for quantum dot spins using cavity polariton resonance. Physical Review B, $2012, 85, .$	3.2	17
103	Power-law decay of the spatial correlation function in exciton-polariton condensates. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6467-6472.	7.1	112
104	The Berezinskii–Kosterlitz–Thouless Phase Transition in Exciton–Polariton Condensates. Springer Series in Solid-state Sciences, 2012, , 85-146.	0.3	0
105	Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nature Physics, 2011, 7, 872-878.	16.7	205
106	Room Temperature Current Injection Polariton Light Emitting Diode with a Hybrid Microcavity. Nano Letters, 2011, 11, 2791-2795.	9.1	34
107	Dynamical d-wave condensation of exciton–polaritons in a two-dimensional square-lattice potential. Nature Physics, 2011, 7, 681-686.	16.7	134
108	Mapping of Ising models onto injection-locked laser systems. Optics Express, 2011, 19, 18091.	3.4	145

#	Article	IF	Citations
109	Single vortex–antivortex pair in an exciton-polariton condensate. Nature Physics, 2011, 7, 129-133.	16.7	192
110	Accelerated optimization problem search using Bose–Einstein condensation. New Journal of Physics, 2011, 13, 113025.	2.9	17
	Ba(Fe <mml:math)="" 0.784314="" 1="" 10<="" etqq1="" overlock="" rgbt="" th="" tj="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><th>Tf 50 672</th><th>Td (display</th></mml:math>	Tf 50 672	Td (display
111	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow< td=""><td>3.2</td><td>95</td></mml:mrow<></mml:msub>	3.2	95
112	Present Status and Future Prospects of Quantum Information Processing: With Special Focus on Optically Controlled Semiconductor Spins and Single-Photon Technologies. Japanese Journal of Applied Physics, 2011, 50, 100001.	1.5	6
113	Kinetic Monte Carlo study of accelerated optimization problem search using Bose-Einstein condensates. Progress in Informatics, 2011, , 39.	0.2	3
114	Present Status and Future Prospects of Quantum Information Processing: With Special Focus on Optically Controlled Semiconductor Spins and Single-Photon Technologies. Japanese Journal of Applied Physics, 2011, 50, 100001.	1.5	3
115	Spin echo of electron spins in semiconductors using ultrafast, small-angle, optical pulses. , 2010, , .		0
116	Exciton-polariton Bose-Einstein condensation. Reviews of Modern Physics, 2010, 82, 1489-1537.	45.6	1,068
117	Ultrafast optical spin echo in a single quantum dot. Nature Photonics, 2010, 4, 367-370.	31.4	298
118	Gain-Induced Trapping of Microcavity Exciton Polariton Condensates. Physical Review Letters, 2010, 104, 126403.	7.8	66
119	Mott transitions of exciton polaritons and indirect excitons in a periodic potential. Physical Review B, 2010, 81, .	3.2	35
120	Higher order coherence of exciton-polariton condensates. Physical Review B, 2010, 81, .	3.2	38
121	In-plane electronic anisotropy in underdoped <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mo>(< Physical Review B. 2010. 81</mml:mo></mml:mrow></mml:mrow></mml:math>	/m͡t͡hl:mo>	<72 <mml:mrov< td=""></mml:mrov<>
122	Pulsed Nuclear Pumping and Spin Diffusion in a Single Charged Quantum Dot. Physical Review Letters, 2010, 105, 107401.	7.8	51
123	Massive parallel generation of indistinguishable single photons via the polaritonic superfluid to Mott-insulator quantum phase transition. New Journal of Physics, 2010, 12, 123001.	2.9	18
124	In-Plane Resistivity Anisotropy in an Underdoped Iron Arsenide Superconductor. Science, 2010, 329, 824-826.	12.6	690
125	BCS Wave-Function Approach to the BEC-BCS Crossover of Exciton-Polariton Condensates. Physical Review Letters, 2010, 105, 186402.	7.8	63
126	DISTRIBUTED QUANTUM COMPUTATION ARCHITECTURE USING SEMICONDUCTOR NANOPHOTONICS. International Journal of Quantum Information, 2010, 08, 295-323.	1.1	77

#	Article	IF	CITATIONS
127	Unconditional Security of Single-Photon Differential Phase Shift Quantum Key Distribution. Physical Review Letters, 2009, 103, 170503.	7.8	47
128	Ultrafast Optical Spin Echo for Electron Spins in Semiconductors. Physical Review Letters, 2009, 102, 247601.	7.8	54
129	Driven to perfection. Nature Physics, 2009, 5, 173-174.	16.7	18
130	Indistinguishable Photons from Independent Semiconductor Nanostructures. Physical Review Letters, 2009, 103, 053601.	7.8	89
131	Signature of the microcavity exciton–polariton relaxation mechanism in the polarization of emitted light. Physical Review B, 2009, 79, .	3.2	24
132	Quantum interference between photons emitted by independent semiconductor single-photon devices. Proceedings of SPIE, 2009, , .	0.8	0
133	Complete coherent control of a single electron spin in a quantum dot using ultrafast optical pulses. Proceedings of SPIE, 2009, , .	0.8	0
134	Monolithic integration of quantum dot containing microdisk microcavities coupled to air-suspended waveguides. Applied Physics Letters, 2009, 94, .	3.3	32
135	GaAs microcavity excitonâ€polaritons in a trap. Physica Status Solidi (B): Basic Research, 2008, 245, 1076-1080.	1.5	26
136	Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature, 2008, 456, 218-221.	27.8	770
137	Ultrafast control of donor-bound electron spins with single detuned optical pulses. Nature Physics, 2008, 4, 780-784.	16.7	46
138	Waveguide-based single-pixel up-conversion infrared spectrometer. Optics Express, 2008, 16, 19557.	3.4	26
139	Tomonaga-Luttinger Liquid Features in Ballistic Single-Walled Carbon Nanotubes: Conductance and Shot Noise. Physical Review Letters, 2007, 99, 036802.	7.8	89
140	Spatial Coherence of a Polariton Condensate. Physical Review Letters, 2007, 99, 126403.	7.8	141
141	Generation and transfer of single photons on a photonic crystal chip. Optics Express, 2007, 15, 5550.	3.4	144
142	Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime. Physical Review Letters, 2007, 98, 117402.	7.8	309
143	Quantum Computers Based on Electron Spins Controlled by Ultrafast Off-Resonant Single Optical Pulses. Physical Review Letters, 2007, 99, 040501.	7.8	88
144	Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nature Photonics, 2007, 1, 343-348.	31.4	640

#	Article	IF	CITATIONS
145	Quantum Degenerate Exciton-Polaritons in Thermal Equilibrium. Physical Review Letters, 2006, 97, 146402.	7.8	156
146	Security of differential-phase-shift quantum key distribution against individual attacks. Physical Review A, 2006, 73, .	2.5	97
147	15 $\hat{l}\frac{1}{4}$ m photon-counting optical time-domain reflectometry with a single-photon detector based on upconversion in a periodically poled lithium niobate waveguide. Optics Letters, 2006, 31, 727.	3.3	37
148	100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors. Optics Express, 2006, 14, 13073.	3.4	90
149	A gallium nitride single-photon source operating at 200 K. Nature Materials, 2006, 5, 887-892.	27.5	388
150	Generation and manipulation of nonclassical light using photonic crystals. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 466-470.	2.7	33
151	Solid state ion trap: Lateral confinement of quantum well excitons by oscillating piezoelectric field. Solid State Communications, 2006, 140, 28-32.	1.9	0
152	Generation of photon number states. New Journal of Physics, 2006, 8, 4-4.	2.9	84
153	An efficient source of single indistinguishable photons. , 2006, , .		0
154	Cavity-enhanced single photons from a quantum dot (Invited Paper)., 2005, , .		3
155	Controlling the spontaneous emission rate of single quantum dots in a 2D photonic crystal. , 2005, , .		11
156	Fabrication of InAs quantum dots in AlAsâ^•GaAs DBR pillar microcavities for single photon sources. Journal of Applied Physics, 2005, 97, 073507.	2.5	17
157	Photon correlation studies of single GaN quantum dots. Applied Physics Letters, 2005, 87, 051916.	3.3	71
158	Photonic-crystal based single photon source., 2005,,.		0
159	Coherent Population Trapping of Electron Spins in a High-Purityn-Type GaAs Semiconductor. Physical Review Letters, 2005, 95, 187405.	7.8	82
160	Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO_3 waveguides. Optics Letters, 2005, 30, 1725.	3.3	299
161	Performance of various quantum-key-distribution systems using 1.55â€Î1⁄4 mup-conversion single-photon detectors. Physical Review A, 2005, 72, .	2.5	39
162	Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal. Physical Review Letters, 2005, 95, 013904.	7.8	805

#	Article	IF	CITATIONS
163	Single photons for quantum information systems. Progress in Informatics, 2005, , 5.	0.2	26
164	Entanglement Formation and Violation of Bell's Inequality with a Semiconductor Single Photon Source. Physical Review Letters, 2004, 92, 037903.	7.8	125
165	Direct Observation of Nonclassical Photon Statistics in Parametric Down-Conversion. Physical Review Letters, 2004, 92, 113602.	7.8	117
166	Submicrosecond correlations in photoluminescence from InAs quantum dots. Physical Review B, 2004, 69, .	3.2	106
167	Optical detection of the spin state of a single nucleus in silicon. Physical Review B, 2004, 69, .	3.2	28
168	Single-photon generation with InAs quantum dots. New Journal of Physics, 2004, 6, 89-89.	2.9	107
169	Polariton lasing in a microcavity. Physica Status Solidi A, 2004, 201, 625-632.	1.7	16
170	Quantum cryptography with a single-photon source. , 2004, , .		0
171	An efficient source of single photons: a single quantum dot in a micropost microcavity. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 564-567.	2.7	10
172	Indistinguishable single photons from a quantum dot. Physica Status Solidi (B): Basic Research, 2003, 238, 305-308.	1.5	4
173	Polariton lasing vs. photon lasing in a semiconductor microcavity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15318-15323.	7.1	362
174	Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot. Applied Physics Letters, 2003, 82, 2374-2376.	3.3	151
175	Exciton–polariton lasing in a microcavity. Semiconductor Science and Technology, 2003, 18, S386-S394.	2.0	23
176	Enhanced single-photon emission from a quantum dot in a micropost microcavity. Applied Physics Letters, 2003, 82, 3596-3598.	3.3	136
177	Time-resolved spectroscopy of multiexcitonic decay in an InAs quantum dot. Physical Review B, 2002, 65, .	3.2	89
178	Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics. Physical Review A, 2002, 66, .	2.5	72
179	Photon counting schemes and performance of non-deterministic nonlinear gates in linear optics., 2002, 4821, 427.		4
180	Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity. Physical Review Letters, 2002, 89, 233602.	7.8	575

#	Article	IF	CITATIONS
181	Polarization-correlated photon pairs from a single quantum dot. Physical Review B, 2002, 66, .	3.2	212
182	Security aspects of quantum key distribution with sub-Poisson light. Physical Review A, 2002, 66, .	2.5	71
183	Security of quantum key distribution with entangled photons against individual attacks. Physical Review A, 2002, 65, .	2.5	205
184	Regulated Single Photons and Entangled Photons From a Quantum Dot Microcavity. Nanoscience and Technology, 2002, , 277-305.	1.5	0
185	Condensation of Semiconductor Microcavity Exciton Polaritons. Science, 2002, 298, 199-202.	12.6	732
186	Indistinguishable photons from a single-photon device. Nature, 2002, 419, 594-597.	27.8	1,347
187	Quantum cryptography with a photon turnstile. Nature, 2002, 420, 762-762.	27.8	272
188	Differential Phase Shift Quantum Key Distribution. Physical Review Letters, 2002, 89, 037902.	7.8	371
189	Triggered Single Photons from a Quantum Dot. Physical Review Letters, 2001, 86, 1502-1505.	7.8	861
190	Entanglement in 2DEG systems: towards a detection loophole-free test of Bell's inequality. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 301-305.	2.7	17
191	Half-matter, half-light amplifier. Nature, 2000, 405, 629-630.	27.8	39
192	Sub-shot-noise frequency-modulation spectroscopy by use of amplitude-squeezed light from semiconductor lasers. Journal of the Optical Society of America B: Optical Physics, 2000, 17, 275.	2.1	19
193	Regulated and Entangled Photons from a Single Quantum Dot. Physical Review Letters, 2000, 84, 2513-2516.	7.8	884
194	Multiphoton detection using visible light photon counter. Applied Physics Letters, 1999, 74, 902-904.	3.3	258
195	Development of a high-quantum-efficiency single-photon counting system. Applied Physics Letters, 1999, 74, 1063-1065.	3.3	219
196	Master-equation model of a single-quantum-dot microsphere laser. Physical Review A, 1999, 59, 4756-4763.	2.5	65
197	Hanbury Brown and Twiss-Type Experiment with Electrons. Science, 1999, 284, 299-301.	12.6	313
198	Ultralow threshold laser using a single quantum dot and a microsphere cavity. Physical Review A, 1999, 59, 2418-2421.	2.5	100

#	Article	IF	Citations
199	Direct time-domain observation of transition from strong to weak coupling in a semiconductor microcavity. Applied Physics Letters, 1998, 73, 3031-3033.	3.3	11
200	Noise-free avalanche multiplication in Si solid state photomultipliers. Applied Physics Letters, 1997, 70, 2852-2854.	3.3	38
201	Approximate quantum error correction can lead to better codes. Physical Review A, 1997, 56, 2567-2573.	2.5	133
202	Theory of noise in p-n junction light emitters. Physical Review B, 1997, 55, 9949-9959.	3.2	21
203	Amplitude-squeezed, frequency-modulated, tunable, diode-laser-based source for sub-shot-noise FM spectroscopy. Optics Letters, 1997, 22, 478.	3.3	44
204	Bosonic quantum codes for amplitude damping. Physical Review A, 1997, 56, 1114-1125.	2.5	139
205	Phonon-assisted exciton–polariton emission in a microcavity. Journal of the Optical Society of America B: Optical Physics, 1996, 13, 1078.	2.1	10
206	Theory of inhomogeneous microcavity polariton splitting. Solid State Communications, 1996, 98, 781-784.	1.9	15
207	Quantum Bit Regeneration. Physical Review Letters, 1996, 76, 4281-4284.	7.8	94
208	Squeezing and Cavity QED in Semiconductors. , 1996, , 201-281.		3
209	The Relation between Two Heisenberg Limited Interferometers: The Photonic de Broglie Wave Interferometer and the Dual Fock State Interferometer. , 1996, , 671-672.		O
210	Stimulated emission of a microcavity dressed exciton and suppression of phonon scattering. Physical Review B, 1995, 51, 7090-7100.	3.2	80
211	Observation of exciton-polariton oscillating emission in a single-quantum-well semiconductor microcavity. Physical Review A, 1995, 51, 2542-2544.	2.5	83
212	Excitonic superradiance to exciton-polariton crossover and the pole approximations. Physical Review B, 1995, 52, 17310-17320.	3.2	34
213	Photonic de Broglie Waves. Physical Review Letters, 1995, 74, 4835-4838.	7.8	224
214	Microcavity exciton-polariton splitting in the linear regime. Physical Review B, 1995, 51, 14437-14447.	3.2	100
215	Macroscopic Coulomb-blockade effect in a constant-current-driven light-emitting diode. Physical Review B, 1995, 52, 2008-2012.	3.2	27
216	Simple quantum computer. Physical Review A, 1995, 52, 3489-3496.	2.5	326

#	Article	IF	Citations
217	Spontaneous Emission Control in Semiconductor Microcavities. NATO ASI Series Series B: Physics, 1995, , 467-501.	0.2	5
218	Photon Number Squeezed States in Semiconductor Lasers. NATO ASI Series Series B: Physics, 1995, , 879-884.	0.2	1
219	Definition of a laser threshold. Physical Review A, 1994, 50, 1675-1680.	2.5	185
220	Wannier exciton superradiance in a quantum-well microcavity. Physical Review B, 1994, 50, 17336-17348.	3.2	59
221	Spontaneous-emission coupling factor and mode characteristics of planar dielectric microcavity lasers. Physical Review A, 1993, 47, 4451-4463.	2.5	148
222	Quantum-nondemolition measurement of the photon number of an optical soliton. Physical Review Letters, 1992, 69, 3165-3168.	7.8	117
223	Quantum correlation between longitudinal-mode intensities in a multimode squeezed semiconductor laser. Physical Review A, 1992, 46, 2757-2765.	2.5	77
224	Effect of electrical partition noise on squeezing in semiconductor lasers. Physical Review A, 1992, 45, 6596-6604.	2.5	21
225	Photon Number Squeezed States in Semiconductor Lasers. Science, 1992, 255, 1219-1224.	12.6	50
226	On the linewidth of microcavity lasers. Applied Physics Letters, 1992, 60, 304-306.	3.3	83
227	Modification of spontaneous emission rate in planar dielectric microcavity structures. Physical Review A, 1991, 44, 669-681.	2.5	344
228	Lasers without Inversion in Microcavities. Japanese Journal of Applied Physics, 1991, 30, L2039-L2041.	1.5	23
229	Quantum noise properties of an injection-locked laser oscillator with pump-noise suppression and squeezed injection. Physical Review A, 1990, 41, 5053-5065.	2.5	29
230	Observation of amplitude squeezing from semiconductor lasers by balanced direct detectors with a delay line. Optics Letters, 1989, 14, 1045.	3.3	58
231	Ultrabroadband amplitude squeezing in a semiconductor laser. Physical Review Letters, 1988, 60, 792-794.	7.8	116