List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4382905/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In-depth profiling of COVID-19 risk factors and preventive measures in healthcare workers. Infection, 2022, 50, 381-394.	2.3	17
2	Inflammasomes in T cells. Journal of Molecular Biology, 2022, 434, 167275.	2.0	14
3	Three exposures to the spike protein of SARS-CoV-2 by either infection or vaccination elicit superior neutralizing immunity to all variants of concern. Nature Medicine, 2022, 28, 496-503.	15.2	215
4	GGCX variants leading to biallelic deficiency to γâ€carboxylate GRP cause skin laxity in VKCFD1 patients. Human Mutation, 2022, 43, 42-55.	1.1	2
5	Rapid, efficient and activation-neutral gene editing of polyclonal primary human resting CD4+ T cells allows complex functional analyses. Nature Methods, 2022, 19, 81-89.	9.0	12
6	Homing in on gasdermins: How fungi regulate cell death. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2201192119.	3.3	1
7	Human NLRP1: From the shadows to center stage. Journal of Experimental Medicine, 2022, 219, .	4.2	22
8	Molecular Signature of Astrocytes for Gene Delivery by the Synthetic Adenoâ€Associated Viral Vector rAAV9P1. Advanced Science, 2022, 9, e2104979.	5.6	7
9	Genome Replication Is Associated With Release of Immunogenic DNA Waste. Frontiers in Immunology, 2022, 13, .	2.2	5
10	ZAKα-driven ribotoxic stress response activates the human NLRP1 inflammasome. Science, 2022, 377, 328-335.	6.0	53
11	cGAS–STING signaling. Current Biology, 2022, 32, R730-R734.	1.8	18
12	Human NLRP1 is a sensor for double-stranded RNA. Science, 2021, 371, .	6.0	191
13	Deletion of Alzheimer's diseaseâ€associated <scp>CD33</scp> results in an inflammatory human microglia phenotype. Glia, 2021, 69, 1393-1412.	2.5	59
14	DPP9 restrains NLRP1 activation. Nature Structural and Molecular Biology, 2021, 28, 333-336.	3.6	7
15	Post-injury immunosuppression and secondary infections are caused by an AIM2 inflammasome-driven signaling cascade. Immunity, 2021, 54, 648-659.e8.	6.6	57
16	GGCX mutations show different responses to vitamin K thereby determining the severity of the hemorrhagic phenotype in VKCFD1 patients. Journal of Thrombosis and Haemostasis, 2021, 19, 1412-1424.	1.9	8
17	An autoimmune disease risk variant: A trans master regulatory effect mediated by IRF1 under immune stimulation?. PLoS Genetics, 2021, 17, e1009684.	1.5	17
18	Molecular mechanisms of nonself nucleic acid recognition by the innate immune system. European Journal of Immunology, 2021, 51, 1897-1910.	1.6	27

#	Article	IF	CITATIONS
19	Phosphoproteome profiling uncovers a key role for CDKs in TNF signaling. Nature Communications, 2021, 12, 6053.	5.8	31
20	Hepatitis-D Virus Infection Is Not Impaired by Innate Immunity but Increases Cytotoxic T-Cell Activity. Cells, 2021, 10, 3253.	1.8	3
21	Evidence for increased SARS-CoV-2 susceptibility and COVID-19 severity related to pre-existing immunity to seasonal coronaviruses. Cell Reports, 2021, 37, 110169.	2.9	34
22	Cytosolic Gram-negative bacteria prevent apoptosis by inhibition of effector caspases through lipopolysaccharide. Nature Microbiology, 2020, 5, 354-367.	5.9	33
23	Front Cover: New Approaches for Absolute Quantification of Stableâ€Isotopeâ€Labeled Peptide Standards for Targeted Proteomics Based on a UV Active Tag. Proteomics, 2020, 20, 2070081.	1.3	0
24	Structural basis for sequestration and autoinhibition of cGAS by chromatin. Nature, 2020, 587, 678-682.	13.7	146
25	Molecular mechanisms and cellular functions of cGAS–STING signalling. Nature Reviews Molecular Cell Biology, 2020, 21, 501-521.	16.1	846
26	Hepatitis B Virus DNA is a Substrate for the cGAS/STING Pathway but is not Sensed in Infected Hepatocytes. Viruses, 2020, 12, 592.	1.5	39
27	Reduced mitochondrial resilience enables non-canonical induction of apoptosis after TNF receptor signaling in virus-infected hepatocytes. Journal of Hepatology, 2020, 73, 1347-1359.	1.8	11
28	The NLRP3 inflammasome pathway is activated in sarcoidosis and involved in granuloma formation. European Respiratory Journal, 2020, 55, 1900119.	3.1	51
29	New Approaches for Absolute Quantification of Stableâ€Isotopeâ€Labeled Peptide Standards for Targeted Proteomics Based on a UV Active Tag. Proteomics, 2020, 20, e2000007.	1.3	7
30	CARD8 inflammasome activation triggers pyroptosis in human T cells. EMBO Journal, 2020, 39, e105071.	3.5	95
31	Irgm2 and Gateâ€16 put a break on caspaseâ€11 activation. EMBO Reports, 2020, 21, e51787.	2.0	8
32	Fourth defence molecule completes antiviral line-up. Nature, 2020, 581, 266-267.	13.7	0
33	C-tag TNF: a reporter system to study TNF shedding. Journal of Biological Chemistry, 2020, 295, 18065-18075.	1.6	7
34	AIM2 inflammasome-derived IL-1β induces postoperative ileus in mice. Scientific Reports, 2019, 9, 10602.	1.6	13
35	Immune homeostasis and regulation of the interferon pathway require myeloid-derived Regnase-3. Journal of Experimental Medicine, 2019, 216, 1700-1723.	4.2	29
36	IRF1 Inhibits Antitumor Immunity through the Upregulation of PD-L1 in the Tumor Cell. Cancer Immunology Research, 2019, 7, 1258-1266.	1.6	56

#	Article	IF	CITATIONS
37	Human <scp>GBP</scp> 1 is a microbeâ€specific gatekeeper of macrophage apoptosis and pyroptosis. EMBO Journal, 2019, 38, e100926.	3.5	170
38	KMT9 monomethylates histone H4 lysine 12 and controls proliferation of prostate cancer cells. Nature Structural and Molecular Biology, 2019, 26, 361-371.	3.6	57
39	Cytoplasmic RNA Sensor Pathways and Nitazoxanide Broadly Inhibit Intracellular Mycobacterium tuberculosis Growth. IScience, 2019, 22, 299-313.	1.9	24
40	TLR8 Is a Sensor of RNase T2 Degradation Products. Cell, 2019, 179, 1264-1275.e13.	13.5	113
41	Insights into Innate Sensing of Prototype Foamy Viruses in Myeloid Cells. Viruses, 2019, 11, 1095.	1.5	4
42	Human RIPK1 deficiency causes combined immunodeficiency and inflammatory bowel diseases. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 970-975.	3.3	130
43	DNA-stimulated cell death: implications for host defence, inflammatory diseases and cancer. Nature Reviews Immunology, 2019, 19, 141-153.	10.6	123
44	Intestinal Inflammation and Dysregulated Immunity in Patients With Inherited Caspase-8 Deficiency. Gastroenterology, 2019, 156, 275-278.	0.6	92
45	Frequently used bioinformatics tools overestimate the damaging effect of allelic variants. Genes and Immunity, 2019, 20, 10-22.	2.2	12
46	The antiviral activity of rodent and lagomorph SERINC3 and SERINC5 is counteracted by known viral antagonists. Journal of General Virology, 2019, 100, 278-288.	1.3	13
47	Modeling Primary Human Monocytes with the Trans–Differentiation Cell Line BLaER1. Methods in Molecular Biology, 2018, 1714, 57-66.	0.4	21
48	BAX/BAK-Induced Apoptosis Results in Caspase-8-Dependent IL-1Î ² Maturation in Macrophages. Cell Reports, 2018, 25, 2354-2368.e5.	2.9	74
49	Activation of the NLRP3 Inflammasome by Hyaboron, a New Asymmetric Boron-Containing Macrodiolide from the Myxobacterium Hyalangium minutum. ACS Chemical Biology, 2018, 13, 2981-2988.	1.6	15
50	Mitochondrial dsRNA: A New DAMP for MDA5. Developmental Cell, 2018, 46, 530-532.	3.1	20
51	VKORC1 and VKORC1L1 have distinctly different oral anticoagulant dose-response characteristics and binding sites. Blood Advances, 2018, 2, 691-702.	2.5	17
52	The NLRP3 Inflammasome Renders Cell Death Pro-inflammatory. Journal of Molecular Biology, 2018, 430, 133-141.	2.0	87
53	RIG-I Resists Hypoxia-Induced Immunosuppression and Dedifferentiation. Cancer Immunology Research, 2017, 5, 455-467.	1.6	29
54	Warfarin and vitamin K compete for binding to Phe55 in human VKOR. Nature Structural and Molecular Biology, 2017, 24, 77-85.	3.6	42

#	Article	IF	CITATIONS
55	Polysialic acid blocks mononuclear phagocyte reactivity, inhibits complement activation, and protects from vascular damage in the retina. EMBO Molecular Medicine, 2017, 9, 154-166.	3.3	63
56	SAMHD1 is a biomarker for cytarabine response and a therapeutic target in acute myeloid leukemia. Nature Medicine, 2017, 23, 250-255.	15.2	121
57	The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell Death Program Upstream of NLRP3. Cell, 2017, 171, 1110-1124.e18.	13.5	431
58	Prolonged IKKÎ ² Inhibition Improves Ongoing CTL Antitumor Responses by Incapacitating Regulatory T Cells. Cell Reports, 2017, 21, 578-586.	2.9	22
59	cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein–DNA ladders. Nature, 2017, 549, 394-398.	13.7	346
60	The PYHIN Protein p205 Regulates the Inflammasome by Controlling Asc Expression. Journal of Immunology, 2017, 199, 3249-3260.	0.4	14
61	Genetic regulatory effects modified by immune activation contribute to autoimmune disease associations. Nature Communications, 2017, 8, 266.	5.8	157
62	Alternative inflammasome activation enables IL-1β release from living cells. Current Opinion in Immunology, 2017, 44, 7-13.	2.4	87
63	STING Contributes to Abnormal Bone Formation Induced by Deficiency of DNase II in Mice. Arthritis and Rheumatology, 2017, 69, 460-471.	2.9	27
64	The Second-Generation Exportin-1 Inhibitor KPT-8602 Demonstrates Potent Activity against Acute Lymphoblastic Leukemia. Clinical Cancer Research, 2017, 23, 2528-2541.	3.2	52
65	ICG-001 affects DRP1 activity and ER stress correlative with its anti-proliferative effect. Oncotarget, 2017, 8, 106764-106777.	0.8	8
66	NSs Virulence Factor of Rift Valley Fever Virus Engages the F-Box Proteins FBXW11 and β-TRCP1 To Degrade the Antiviral Protein Kinase PKR. Journal of Virology, 2016, 90, 6140-6147.	1.5	48
67	Cyclic Dinucleotides in the Scope of the Mammalian Immune System. Handbook of Experimental Pharmacology, 2016, 238, 269-289.	0.9	4
68	Pore formation by <scp>GSDMD</scp> is the effector mechanism of pyroptosis. EMBO Journal, 2016, 35, 2167-2169.	3.5	114
69	CRISPaint allows modular base-specific gene tagging using a ligase-4-dependent mechanism. Nature Communications, 2016, 7, 12338.	5.8	141
70	Human Monocytes Engage an Alternative Inflammasome Pathway. Immunity, 2016, 44, 833-846.	6.6	619
71	Measuring IL-1Î ² Processing by Bioluminescence Sensors II: The iGLuc System. Methods in Molecular Biology, 2016, 1417, 97-113.	0.4	5
72	Cre-dependent DNA recombination activates a STING-dependent innate immune response. Nucleic Acids Research, 2016, 44, 5356-5364.	6.5	44

#	Article	IF	CITATIONS
73	Recognition of Endogenous Nucleic Acids by the Innate Immune System. Immunity, 2016, 44, 739-754.	6.6	390
74	cGAS-Mediated Innate Immunity Spreads Intercellularly through HIV-1 Env-Induced Membrane Fusion Sites. Cell Host and Microbe, 2016, 20, 443-457.	5.1	46
75	Aging-Associated TNF Production Primes Inflammasome Activation and NLRP3-Related Metabolic Disturbances. Journal of Immunology, 2016, 197, 2900-2908.	0.4	107
76	Group B Streptococcus Degrades Cyclic-di-AMP to Modulate STING-Dependent Type I Interferon Production. Cell Host and Microbe, 2016, 20, 49-59.	5.1	110
77	Type I Interferon Induction by Neisseria gonorrhoeae: Dual Requirement of Cyclic GMP-AMP Synthase and Toll-like Receptor 4. Cell Reports, 2016, 15, 2438-2448.	2.9	66
78	Inflammasome-Dependent Induction of Adaptive NK Cell Memory. Immunity, 2016, 44, 1406-1421.	6.6	67
79	An NLRP3-specific inflammasome inhibitor attenuates crystal-induced kidney fibrosis inÂmice. Kidney International, 2016, 90, 525-539.	2.6	144
80	Human plasmacytoid dendritic cells elicit a Type I Interferon response by sensing DNA via the cGAS‣TING signaling pathway. European Journal of Immunology, 2016, 46, 1615-1621.	1.6	63
81	Guanylate Binding Protein (GBP) 5 Is an Interferon-Inducible Inhibitor of HIV-1 Infectivity. Cell Host and Microbe, 2016, 19, 504-514.	5.1	211
82	MOV10 Provides Antiviral Activity against RNA Viruses by Enhancing RIG-l–MAVS-Independent IFN Induction. Journal of Immunology, 2016, 196, 3877-3886.	0.4	60
83	Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses. Nature Communications, 2016, 7, 10680.	5.8	169
84	Comprehensive RNAi-based screening of human and mouse TLR pathways identifies species-specific preferences in signaling protein use. Science Signaling, 2016, 9, ra3.	1.6	66
85	A Genome-wide CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) Screen Identifies NEK7 as an Essential Component of NLRP3 Inflammasome Activation. Journal of Biological Chemistry, 2016, 291, 103-109.	1.6	359
86	Designer Nuclease-Mediated Generation of Knockout THP1 Cells. Methods in Molecular Biology, 2016, 1338, 261-272.	0.4	22
87	cGAS Senses Human Cytomegalovirus and Induces Type I Interferon Responses in Human Monocyte-Derived Cells. PLoS Pathogens, 2016, 12, e1005546.	2.1	168
88	Caspaseâ€4 mediates nonâ€canonical activation of the NLRP3 inflammasome in human myeloid cells. European Journal of Immunology, 2015, 45, 2911-2917.	1.6	244
89	Synthesis of an arrayed sgRNA library targeting the human genome. Scientific Reports, 2015, 5, 14987.	1.6	46
90	Human <scp>TLR</scp> 8 senses <scp>UR</scp> / <scp>URR</scp> motifs in bacterial and mitochondrial <scp>RNA</scp> . EMBO Reports, 2015, 16, 1656-1663.	2.0	110

#	Article	IF	CITATIONS
91	Phosphorylation of murine SAMHD1 regulates its antiretroviral activity. Retrovirology, 2015, 12, 103.	0.9	48
92	AIM2 Drives Joint Inflammation in a Self-DNA Triggered Model of Chronic Polyarthritis. PLoS ONE, 2015, 10, e0131702.	1.1	85
93	Mycobacterium tuberculosis Differentially Activates cGAS- and Inflammasome-Dependent Intracellular Immune Responses through ESX-1. Cell Host and Microbe, 2015, 17, 799-810.	5.1	341
94	Control of Hepatitis C Virus Replication in Mouse Liver-Derived Cells by MAVS-Dependent Production of Type I and Type III Interferons. Journal of Virology, 2015, 89, 3833-3845.	1.5	23
95	Influenza Virus Adaptation PB2-627K Modulates Nucleocapsid Inhibition by the Pathogen Sensor RIG-I. Cell Host and Microbe, 2015, 17, 309-319.	5.1	118
96	Functional IRF3 deficiency in a patient with herpes simplex encephalitis. Journal of Experimental Medicine, 2015, 212, 1371-1379.	4.2	171
97	Deficient NLRP3 and AIM2 Inflammasome Function in Autoimmune NZB Mice. Journal of Immunology, 2015, 195, 1233-1241.	0.4	32
98	A Conserved Histidine in the RNA Sensor RIG-I Controls Immune Tolerance to N1-2′O-Methylated Self RNA. Immunity, 2015, 43, 41-51.	6.6	221
99	ATP-Dependent Effector-like Functions of RIG-I-like Receptors. Molecular Cell, 2015, 58, 541-548.	4.5	62
100	Ligation-Independent Cloning (LIC) Assembly of TALEN Genes. Methods in Molecular Biology, 2015, 1239, 161-169.	0.4	11
101	Sox2 as a servant of two masters. Nature Immunology, 2015, 16, 335-336.	7.0	4
102	Extracorporeal Photopheresis Promotes IL-1Î ² Production. Journal of Immunology, 2015, 194, 2569-2577.	0.4	25
103	Structural and functional analysis reveals that human OASL binds dsRNA to enhance RIG-I signaling. Nucleic Acids Research, 2015, 43, 5236-5248.	6.5	57
104	Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference. Nucleic Acids Research, 2015, 43, 3407-3419.	6.5	124
105	MITF and c-Jun antagonism interconnects melanoma dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment. Nature Communications, 2015, 6, 8755.	5.8	175
106	BrowserGenome.org: web-based RNA-seq data analysis and visualization. Nature Methods, 2015, 12, 1001-1001.	9.0	11
107	Suppression of Intratumoral CCL22 by Type I Interferon Inhibits Migration of Regulatory T Cells and Blocks Cancer Progression. Cancer Research, 2015, 75, 4483-4493.	0.4	59
108	STING Signaling the enERGIC Way. Cell Host and Microbe, 2015, 18, 137-139.	5.1	12

#	Article	IF	CITATIONS
109	Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Nature Immunology, 2015, 16, 1025-1033.	7.0	202
110	ATP hydrolysis by the viral RNA sensor RIC-I prevents unintentional recognition of self-RNA. ELife, 2015, 4, .	2.8	75
111	Selfâ€priming determines high type I <scp>IFN</scp> production by plasmacytoid dendritic cells. European Journal of Immunology, 2014, 44, 807-818.	1.6	63
112	SnapShot: Nucleic Acid Immune Sensors, Part 1. Immunity, 2014, 41, 868-868.e1.	6.6	30
113	Cytosolic RNA:DNA hybrids activate the <scp>cGAS</scp> –STING axis. EMBO Journal, 2014, 33, 2937-2946.	3.5	257
114	SnapShot: Nucleic Acid Immune Sensors, Part 2. Immunity, 2014, 41, 1066-1066.e1.	6.6	24
115	Characterizing the genetic basis of innate immune response in TLR4-activated human monocytes. Nature Communications, 2014, 5, 5236.	5.8	61
116	OutKnocker: a web tool for rapid and simple genotyping of designer nuclease edited cell lines. Genome Research, 2014, 24, 1719-1723.	2.4	122
117	TREX1 Deficiency Triggers Cell-Autonomous Immunity in a cGAS-Dependent Manner. Journal of Immunology, 2014, 192, 5993-5997.	0.4	210
118	Cutting Edge: The UNC93B1 Tyrosine-Based Motif Regulates Trafficking and TLR Responses via Separate Mechanisms. Journal of Immunology, 2014, 193, 3257-3261.	0.4	37
119	OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids. Nature Reviews Immunology, 2014, 14, 521-528.	10.6	246
120	Postoperative Ileus Involves Interleukin-1 Receptor Signaling in Enteric Glia. Gastroenterology, 2014, 146, 176-187.e1.	0.6	110
121	Antiviral Activity of Human OASL Protein Is Mediated by Enhancing Signaling of the RIG-I RNA Sensor. Immunity, 2014, 40, 936-948.	6.6	201
122	Enzymatic Synthesis and Purification of a Defined RIG-I Ligand. Methods in Molecular Biology, 2014, 1169, 15-25.	0.4	16
123	Molecular Mechanism for p202-Mediated Specific Inhibition of AIM2 Inflammasome Activation. Cell Reports, 2013, 4, 327-339.	2.9	81
124	Immunoblotting for Active Caspase-1. Methods in Molecular Biology, 2013, 1040, 103-115.	0.4	43
125	Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature, 2013, 503, 530-534.	13.7	483
126	Of inflammasomes and pathogens – sensing of microbes by the inflammasome. EMBO Molecular Medicine, 2013, 5, 814-826.	3.3	138

#	Article	IF	CITATIONS
127	iGLuc: a luciferase-based inflammasome and protease activity reporter. Nature Methods, 2013, 10, 147-154.	9.0	65
128	A ligation-independent cloning technique for high-throughput assembly of transcription activator–like effector genes. Nature Biotechnology, 2013, 31, 76-81.	9.4	229
129	Nucleic acid driven sterile inflammation. Clinical Immunology, 2013, 147, 207-215.	1.4	69
130	Species-specific detection of the antiviral small-molecule compound CMA by STING. EMBO Journal, 2013, 32, 1440-1450.	3.5	162
131	Structural mechanism of cytosolic DNA sensing by cGAS. Nature, 2013, 498, 332-337.	13.7	608
132	cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature, 2013, 498, 380-384.	13.7	1,193
133	DNA sensing unchained. Cell Research, 2013, 23, 585-587.	5.7	15
134	Mechanisms of IL-1ïį¼ Maturation in Neutrophils. Else-Kröner-Fresenius-Symposia, 2013, , 15-23.	0.1	2
135	RIG-I Detects Triphosphorylated RNA of Listeria monocytogenes during Infection in Non-Immune Cells. PLoS ONE, 2013, 8, e62872.	1.1	68
136	Retroviral Danger from Within: TLR7 Is in Control. Immunity, 2012, 37, 763-766.	6.6	2
137	NLRP3 Inflammasome Activity Is Negatively Controlled by miR-223. Journal of Immunology, 2012, 189, 4175-4181.	0.4	402
138	Structures of the HIN Domain:DNA Complexes Reveal Ligand Binding and Activation Mechanisms of the AIM2 Inflammasome and IFI16 Receptor. Immunity, 2012, 36, 561-571.	6.6	456
139	Induction of type I IFNs by intracellular DNAâ€sensing pathways. Immunology and Cell Biology, 2012, 90, 474-482.	1.0	74
140	The NLRP3/ASC/Caspaseâ€1 axis regulates ILâ€1β processing in neutrophils. European Journal of Immunology, 2012, 42, 710-715.	1.6	155
141	Immunology in clinic review series; focus on autoinflammatory diseases: inflammasomes: mechanisms of activation. Clinical and Experimental Immunology, 2012, 167, 369-381.	1.1	47
142	Where, in antiviral defense, does IFIT1 fit?. Nature Immunology, 2011, 12, 588-590.	7.0	15
143	Cytosolic DNA Triggers Inflammasome Activation in Keratinocytes in Psoriatic Lesions. Science Translational Medicine, 2011, 3, 82ra38.	5.8	342
144	Critical role of nucleotide-binding oligomerization domain-like receptor 3 in vascular repair. Biochemical and Biophysical Research Communications, 2011, 411, 627-631.	1.0	6

#	Article	IF	CITATIONS
145	Activation of the inflammasome by amorphous silica and TiO ₂ nanoparticles in murine dendritic cells. Nanotoxicology, 2011, 5, 326-340.	1.6	175
146	Inflammasomes: current understanding and open questions. Cellular and Molecular Life Sciences, 2011, 68, 765-783.	2.4	316
147	Cutting Edge: Reactive Oxygen Species Inhibitors Block Priming, but Not Activation, of the NLRP3 Inflammasome. Journal of Immunology, 2011, 187, 613-617.	0.4	506
148	Critical functions of priming and lysosomal damage for NLRP3 activation. European Journal of Immunology, 2010, 40, 620-623.	1.6	243
149	<i>Listeria monocytogenes</i> is sensed by the NLRP3 and AIM2 inflammasome. European Journal of Immunology, 2010, 40, 1545-1551.	1.6	221
150	NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010, 464, 1357-1361.	13.7	3,130
151	Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 11² production. Nature Immunology, 2010, 11, 63-69.	7.0	477
152	The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nature Immunology, 2010, 11, 395-402.	7.0	1,113
153	Intracellular DNA recognition. Nature Reviews Immunology, 2010, 10, 123-130.	10.6	320
154	Immunostimulatory RNA Blocks Suppression by Regulatory T Cells. Journal of Immunology, 2010, 184, 939-946.	0.4	55
155	An unexpected role for RNA in the recognition of DNA by the innate immune system. RNA Biology, 2010, 7, 151-157.	1.5	11
156	Cutting Edge: NF-κB Activating Pattern Recognition and Cytokine Receptors License NLRP3 Inflammasome Activation by Regulating NLRP3 Expression. Journal of Immunology, 2009, 183, 787-791.	0.4	2,281
157	Immunostimulatory RNA Oligonucleotides Induce an Effective Antitumoral NK Cell Response through the TLR7. Journal of Immunology, 2009, 183, 6078-6086.	0.4	42
158	Trif is not required for immune complex glomerulonephritis: dying cells activate mesangial cells via Tlr2/Myd88 rather than Tlr3/Trif. American Journal of Physiology - Renal Physiology, 2009, 296, F867-F874.	1.3	33
159	AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature, 2009, 458, 514-518.	13.7	2,098
160	RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III–transcribed RNA intermediate. Nature Immunology, 2009, 10, 1065-1072.	7.0	762
161	'Toll2008' outgrows its name. Nature Immunology, 2009, 10, 7-10.	7.0	1
162	TLR2 joins the interferon gang. Nature Immunology, 2009, 10, 1139-1141.	7.0	13

#	Article	IF	CITATIONS
163	Recognition of 5′ Triphosphate by RIG-I Helicase Requires Short Blunt Double-Stranded RNA as Contained in Panhandle of Negative-Strand Virus. Immunity, 2009, 31, 25-34.	6.6	660
164	Selection of Molecular Structure and Delivery of RNA Oligonucleotides to Activate TLR7 versus TLR8 and to Induce High Amounts of IL-12p70 in Primary Human Monocytes. Journal of Immunology, 2009, 182, 6824-6833.	0.4	90
165	TLR8-driven IL-12–dependent Reciprocal and Synergistic Activation of NK Cells and Monocytes by Immunostimulatory RNA. Journal of Immunotherapy, 2009, 32, 262-271.	1.2	30
166	Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon–independent apoptosis in human melanoma cells. Journal of Clinical Investigation, 2009, 119, 2399-411.	3.9	322
167	Viral 5′â€ŧriphosphate RNA and non pG DNA aggravate autoimmunity and lupus nephritis <i>via</i> distinct TLRâ€independent immune responses. European Journal of Immunology, 2008, 38, 3487-3498.	1.6	55
168	Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunology, 2008, 9, 847-856.	7.0	2,568
169	The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nature Immunology, 2008, 9, 857-865.	7.0	2,047
170	5′-triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma. Nature Medicine, 2008, 14, 1256-1263.	15.2	353
171	RNA Recognition via TLR7 and TLR8. Handbook of Experimental Pharmacology, 2008, , 71-86.	0.9	77
172	Superior Immunogenicity of Inactivated Whole Virus H5N1 Influenza Vaccine is Primarily Controlled by Toll-like Receptor Signalling. PLoS Pathogens, 2008, 4, e1000138.	2.1	221
173	RNA Interference in Scope of Immune System. , 2008, , 207-226.		0
174	Immunostimulatory RNA oligonucleotides trigger an antigen-specific cytotoxic T-cell and IgG2a response. Blood, 2007, 109, 2953-2960.	0.6	54
175	A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing. Cell, 2007, 129, 1401-1414.	13.5	3,390
176	Beyond Double-Stranded RNA-Type I IFN Induction by 3pRNA and Other Viral Nucleic Acids. Current Topics in Microbiology and Immunology, 2007, 316, 207-230.	0.7	27
177	siRNA and isRNA: two edges of one sword. Molecular Therapy, 2006, 14, 463-470.	3.7	214
178	5'-Triphosphate RNA Is the Ligand for RIG-I. Science, 2006, 314, 994-997.	6.0	2,094
179	T Cell-Independent, TLR-Induced IL-12p70 Production in Primary Human Monocytes. Journal of Immunology, 2006, 176, 7438-7446.	0.4	102
180	Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nature Medicine, 2005, 11, 263-270.	15.2	1,153

#	Article	IF	CITATIONS
181	CpG ODN enhance antigen-specific NKT cell activation via plasmacytoid dendritic cells. European Journal of Immunology, 2005, 35, 2347-2357.	1.6	71
182	No Indication for a Defect in Toll-Like Receptor Signaling in Patients with Hyper-IgE Syndrome. Journal of Clinical Immunology, 2005, 25, 321-328.	2.0	16
183	Spontaneous Formation of Nucleic Acid-based Nanoparticles Is Responsible for High Interferon-α Induction by CpG-A in Plasmacytoid Dendritic Cells. Journal of Biological Chemistry, 2005, 280, 8086-8093.	1.6	160
184	Plasmacytoid Dendritic Cells Control TLR7 Sensitivity of Naive B Cells via Type I IFN. Journal of Immunology, 2005, 174, 4043-4050.	0.4	319
185	Cell Cycle Effects of Radiation on Human Bronchial Epithelium and Lung Carcinoma Cells in Monolayer Cultures and a Three-Dimensional Co-culture System. Radiation Research, 2005, 164, 391-399.	0.7	6
186	Inhibition of Toll-Like Receptor 7- and 9-Mediated Alpha/Beta Interferon Production in Human Plasmacytoid Dendritic Cells by Respiratory Syncytial Virus and Measles Virus. Journal of Virology, 2005, 79, 5507-5515.	1.5	208
187	Replication-Dependent Potent IFN-α Induction in Human Plasmacytoid Dendritic Cells by a Single-Stranded RNA Virus. Journal of Immunology, 2004, 173, 5935-5943.	0.4	191
188	CpG-A and CpG-B oligonucleotides differentially enhance human peptide–specific primary and memory CD8+ T-cell responses in vitro. Blood, 2004, 103, 2162-2169.	0.6	94
189	Plasmacytoid dendritic cells, antigen, and CpG-C license human B cells for plasma cell differentiation and immunoglobulin production in the absence of T-cell help. Blood, 2004, 103, 3058-3064.	0.6	264
190	Activation with CpG-A and CpG-B Oligonucleotides Reveals Two Distinct Regulatory Pathways of Type I IFN Synthesis in Human Plasmacytoid Dendritic Cells. Journal of Immunology, 2003, 170, 4465-4474.	0.4	305
191	Quantitative Expression of Toll-Like Receptor 1–10 mRNA in Cellular Subsets of Human Peripheral Blood Mononuclear Cells and Sensitivity to CpG Oligodeoxynucleotides. Journal of Immunology, 2002, 168, 4531-4537.	0.4	1,780
192	Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. European Journal of Immunology, 2001, 31, 3026-3037.	1.6	704
193	Identification of CpG oligonucleotide sequences with high induction of IFN-α/β in plasmacytoid dendritic cells. European Journal of Immunology, 2001, 31, 2154-2163.	1.6	790
194	Distinct CpG oligonucleotide sequences activate human γ δT cells via interferon-α/-β. European Journal of Immunology, 2001, 31, 3525-3534.	1.6	68
195	Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. , 2001, 31, 3026.		3
196	Identification of CpG oligonucleotide sequences with high induction of IFN- $\hat{1}\pm/\hat{1}^2$ in plasmacytoid dendritic cells. , 2001, 31, 2154.		3