Aldo Ejlli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4382560/publications.pdf

Version: 2024-02-01

394421 552781 4,105 27 19 26 h-index citations g-index papers 28 28 28 3736 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	8.3	1,090
2	GW190521: A Binary Black Hole Merger with a Total Mass of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>150</mml:mn><mml:mtext> </mml:mtext><mml:mtext> ⊙</mml:mtext></mml:mrow></mml:math> . Physical Review Letters, 2020, 125, 101102.	nml m& extx	∙ <n®and:msub></n
3	Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog. Astrophysical Journal Letters, 2021, 913, L7.	8.3	514
4	Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences. Astrophysical Journal Letters, 2021, 915, L5.	8.3	453
5	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	8.3	406
6	The PVLAS experiment: measuring vacuum magnetic birefringence and dichroism with a birefringent Fabry–Perot cavity. European Physical Journal C, 2016, 76, 1.	3.9	150
7	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run. Physical Review Letters, 2021, 126, 241102.	7.8	87
8	The PVLAS experiment: A 25 year effort to measure vacuum magnetic birefringence. Physics Reports, 2020, 871, 1-74.	25.6	72
9	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophysical Journal Letters, 2020, 902, L21.	8.3	65
10	First results from the new PVLAS apparatus: A new limit on vacuum magnetic birefringence. Physical Review D, 2014, 90, .	4.7	63
11	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO–Virgo's Third Observing Run. Astrophysical Journal, 2021, 923, 14.	4.5	59
12	Upper limits on the amplitude of ultra-high-frequency gravitational waves from graviton to photon conversion. European Physical Journal C, 2019, 79, 1.	3.9	58
13	Searches for Continuous Gravitational Waves from Young Supernova Remnants in the Early Third Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 921, 80.	4.5	39
14	Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910. Astrophysical Journal Letters, 2021, 913, L27.	8.3	32
15	Constraints from LIGO O3 Data on Gravitational-wave Emission Due to R-modes in the Glitching Pulsar PSR J0537–6910. Astrophysical Journal, 2021, 922, 71.	4.5	29
16	An experiment for observing quantum gravity phenomena using twin table-top 3D interferometers. Classical and Quantum Gravity, 2021, 38, 085008.	4.0	27
17	Extremely long decay time optical cavity. Optics Express, 2014, 22, 11570.	3.4	26
18	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3a. Astrophysical Journal, 2021, 915, 86.	4.5	20

Aldo Ejlli

#	Article	IF	CITATION
19	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
20	A polarisation modulation scheme for measuring vacuum magnetic birefringence with static fields. European Physical Journal C, 2016 , 76 , 1 .	3.9	12
21	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. Astrophysical Journal, 2020, 893, 100.	4.5	12
22	Intrinsic mirror noise in Fabry–Perot based polarimeters: the case for the measurement of vacuum magnetic birefringence. European Physical Journal C, 2018, 78, 1.	3.9	10
23	Measurement of the Cotton Mouton effect of water vapour. Chemical Physics Letters, 2014, 592, 288-291.	2.6	8
24	Polarisation dynamics of a birefringent Fabry–Perot cavity. Applied Physics B: Lasers and Optics, 2018, 124, 1.	2.2	8
25	Polarimetry for measuring the vacuum magnetic birefringence with quasi-static fields: a systematics study for the VMB@CERN experiment. European Physical Journal C, 2022, 82, 1.	3.9	3
26	Experimental perspectives in (low-energy) photon-photon scattering. Journal of Physics: Conference Series, 2014, 490, 012153.	0.4	0
27	Progress toward a direct experimental detection of $\hat{I}^3\hat{I}^3$ interactions. Nuclear and Particle Physics Proceedings, 2016, 270-272, 67-72.	0.5	0