
Yoshikazu Nakai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4381237/publications.pdf Version: 2024-02-01

Υσεμικάζιι Νάκαι

#	Article	IF	CITATIONS
1	Fatigue growth threshold of small cracks. International Journal of Fracture, 1981, 17, 519-533.	2.2	292
2	PROPAGATION AND NON-PROPAGATION OF SHORT FATIGUE CRACKS AT A SHARP NOTCH. Fatigue and Fracture of Engineering Materials and Structures, 1983, 6, 315-327.	3.4	184
3	Modelling of small fatigue crack growth interacting with grain boundary. Engineering Fracture Mechanics, 1986, 24, 803-819.	4.3	160
4	A model of crack-tip slip band blocked by grain boundary. Mechanics Research Communications, 1978, 5, 375-381.	1.8	108
5	The effects of stress ratio and grain size on near-threshold fatigue crack propagation in low-carbon steel. Engineering Fracture Mechanics, 1981, 15, 291-302.	4.3	91
6	Non-destructive observation of internal fatigue crack growth in Ti–6Al–4V by using synchrotron radiation μCT imaging. International Journal of Fatigue, 2016, 93, 397-405.	5.7	64
7	Effect of harmonic structure design with bimodal grain size distribution on near-threshold fatigue crack propagation in Ti–6Al–4V alloy. International Journal of Fatigue, 2016, 92, 616-622.	5.7	43
8	Prediction of Fatigue Threshold of Notched Components. Journal of Engineering Materials and Technology, Transactions of the ASME, 1984, 106, 192-199.	1.4	37
9	Evaluation of near-threshold fatigue crack propagation in harmonic-structured CP titanium with a bimodal grain size distribution. Engineering Fracture Mechanics, 2017, 181, 77-86.	4.3	37
10	Statistical fatigue properties and small fatigue crack propagation in bimodal harmonic structured Ti-6Al-4V alloy under four-point bending. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 711, 29-36.	5.6	34
11	Observation of fatigue damage in structural steel by scanning atomic force microscopy. International Journal of Fatigue, 1997, 19, 223-236.	5.7	33
12	Effects of loading frequency and environment on delamination fatigue crack growth of CFRP. International Journal of Fatigue, 2002, 24, 161-170.	5.7	31
13	Fatigue crack initiation site and propagation paths in high-cycle fatigue of magnesium alloy AZ31. International Journal of Fatigue, 2019, 123, 248-254.	5.7	31
14	Fractographic analysis of fatigue crack initiation and propagation in CP titanium with a bimodal harmonic structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 716, 228-234.	5.6	30
15	é‰"é‹¼ææ–™ã®ç–²åŠ´ãè£,ä¼ã±ä,‹é™ç•Œã«åŠã¾ãã%äča³Žáã™å;œåŠ›æ¯"ã®å½±éŸį. Zairyo/Journal of the Society c	f Ma te øals	Sci an ce, Japa
16	Short-crack growth in corrosion fatigue for a high strength steel. Engineering Fracture Mechanics, 1986, 24, 433-444.	4.3	26
17	Effect of defect shape on rolling contact fatigue crack initiation and propagation in high strength steel. International Journal of Fatigue, 2016, 92, 507-516.	5.7	26
18	Fracture mechanics approach to fatigue crack initiation from deep notches. Engineering Fracture Mechanics, 1983, 18, 1011-1023.	4.3	24

Υοςηικάζυ Νάκαι

#	Article	IF	CITATIONS
19	Evaluation of rolling contact fatigue crack path in high strength steel with artificial defects. International Journal of Fatigue, 2014, 68, 168-177.	5.7	24
20	Plastic deformation around a fatigue crack near threshold in 3%Siî—,Fe. Materials Science and Engineering, 1982, 55, 85-96.	0.1	23
21	Fatigue Crack Initiation and Small-Crack Propagation in Zr-Based Bulk Metallic Glass. Materials Transactions, 2007, 48, 1770-1773.	1.2	22
22	Observation of 3D shape and propagation mode transition of fatigue cracks in Ti–6Al–4V under cyclic torsion using CT imaging with ultra-bright synchrotron radiation. International Journal of Fatigue, 2014, 58, 158-165.	5.7	21
23	Effects of frequency and temperature on short fatigue crack growth in aqueous environments. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1988, 19, 543-548.	1.4	19
24	Effect of bimodal harmonic structure on fatigue properties of austenitic stainless steel under axial loading. International Journal of Fatigue, 2019, 127, 222-228.	5.7	19
25	Fatigue Crack Initiation and Early Propagation in 3% Silicon Iron. , 1983, , 207-232.		19
26	Effect of TiB Orientation on Near-Threshold Fatigue Crack Propagation in TiB-Reinforced Ti-3Al-2.5V Matrix Composites Treated with Heat Extrusion. Materials, 2019, 12, 3685.	2.9	18
27	The effects of thermo-mechanical processing on fatigue crack propagation in commercially pure titanium with a harmonic structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 773, 138892.	5.6	18
28	ä¼zŽç,ç´é‹¼å¹³æ»'æã«ãŠã'ã,‹ç−²åŠ´ãè£,ã®ç™ºç"Ÿãë刜œŸæˆé•ã«é−¢ã™ã,‹å¾®è¦−çš,,ç"ç©¶. Zairyo/Journal	of t læ2 Soci	iety1 0 f Materia
29	Effects of texture and stress sequence on twinning, detwinning and fatigue crack initiation in extruded magnesium alloy AZ31. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 826, 141941.	5.6	17
30	4D evaluation of grain shape and fatigue damage of individual grains in polycrystalline alloys by diffraction contrast tomography using ultrabright synchrotron radiation. International Journal of Fatigue, 2016, 82, 247-255.	5.7	16
31	Evaluation of Interfacial Fracture Toughness and Interfacial Shear Strength of Typha Spp. Fiber/Polymer Composite by Double Shear Test Method. Materials, 2019, 12, 2225.	2.9	16
32	Statistical Analysis of the Tensile Strength of Treated Oil Palm Fiber by Utilisation of Weibull Distribution Model. Open Journal of Composite Materials, 2014, 04, 72-77.	0.8	16
33	Classification of Î ³ -Î ³ and Î ³ -α2lamellar boundaries on the basis of continuity of strains and slip-twinning planes in fatigued TiAl polysynthetically twinned crystals. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2001, 81, 1447-1471.	0.6	15
34	Detection of small internal fatigue cracks in Ti-6Al-4V by using synchrotron radiation μCT imaging. Mechanical Engineering Letters, 2016, 2, 16-00233-16-00233.	0.6	14
35	Formation of nitrided layer using atmospheric-controlled IH-FPP and its effect on the fatigue properties of Ti-6Al-4V alloy under four-point bending. Procedia Structural Integrity, 2016, 2, 3432-3438.	0.8	14
36	Observation of Cracks in Steels Using Synchrotron Radiation X-Ray Micro Tomography. Zairyo/Journal of the Society of Materials Science, Japan, 2007, 56, 951-957.	0.2	14

Yoshikazu Nakai

#	Article	IF	CITATIONS
37	Stress Corrosion and Corrosion Fatigue Crack Growth of Zr-Based Bulk Metallic Glass in Aqueous Solutions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 1792-1798.	2.2	13
38	Effects of rolling reduction and direction on fatigue crack propagation in commercially pure titanium with harmonic structure. International Journal of Fatigue, 2021, 143, 106018.	5.7	13
39	Mechanisms and Mechanics of Fatigue Fracture of Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1993, 79, 908-919.	0.4	13
40	Fatigue of Zrâ€based Bulk Metallic Glass Under Compression–compression Stress. Advanced Engineering Materials, 2008, 10, 1026-1029.	3.5	12
41	低ç,ç´é‹¼å^‡æ¬ãæã«ãŠã⁴ã,‹ç−²åŠ´ãè£,ã®ä¼ã±ã*åœç•™. Zairyo∥Journal of the Society of Materials Science, Jap	an q.⊉ 983,	322535-541
42	4D observations of rolling contact fatigue processes by laminography using ultra-bright synchrotron radiation. Engineering Fracture Mechanics, 2017, 183, 180-189.	4.3	11
43	Rolling Contact Fatigue Damage from Artificial Defects and Sulphide Inclusions in High Strength Steel. Procedia Structural Integrity, 2017, 7, 468-475.	0.8	11
44	Evaluation of Fatigue Properties under Four-point Bending and Fatigue Crack Propagation in Austenitic Stainless Steel with a Bimodal Harmonic Structure. Frattura Ed Integrita Strutturale, 2019, 13, 545-553.	0.9	11
45	Measurement of short crack lengths by an a.c. potential method. Engineering Fracture Mechanics, 1989, 32, 581-589.	4.3	10
46	Effects of Stress Ratio and Frequency on Fatigue Crack Growth Behavior of Zr-Based Bulk Metallic Glass. Zairyo/Journal of the Society of Materials Science, Japan, 2007, 56, 229-235.	0.2	10
47	Initiation and Growth of Pits and Cracks in Corrosion Fatigue for High Strength Aluminium Alloy Observed by Micro Computed-Tomography Using Ultra-Bright Synchrotron Radiation. Applied Mechanics and Materials, 2011, 83, 162-167.	0.2	9
48	Change of misorientation of individual grains in fatigue of polycrystalline alloys by diffraction contrast tomography using ultrabright synchrotron radiation. Procedia Structural Integrity, 2017, 3, 402-410.	0.8	9
49	Evaluation of Fatigue Damage and Fatigue Crack Initiation Process by Means of Atomic-Force Microscopy. Zairyo/Journal of the Society of Materials Science, Japan, 2001, 50, 73-81.	0.2	8
50	Mechanisms and Mechanics of Fatigue Crack Propagation in Zr-Based Bulk Metallic Glass. Key Engineering Materials, 0, 378-379, 317-328.	0.4	8
51	Observations of Twinning and Detwinning in Magnesium Alloy by Synchrotron Radiation DCT and EBSD. Procedia Structural Integrity, 2019, 23, 83-88.	0.8	8
52	å¾®å°ç−²åŠ´ãè£,ã«ãŠã'ã,‹é−‹é−‰å£æŒ™å‹•ã®åŠ›å┤的解枕 Zairyo/Journal of the Society of Materials Scien	ce9J a pan,	1983, 32, 19

53	Evaluation of near-threshold fatigue crack propagation in Ti-6Al-4V Alloy with harmonic structure created by Mechanical Milling and Spark Plasma Sintering. Frattura Ed Integrita Strutturale, 2015, 9, .	0.9	8
54	Quantitative Analysis of Inclusions in High-strength Steels by X-ray Computed Tomography Using Ultra-bright Synchrotron Radiation. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2006, 72, 1846-1852.	0.2	7

#	Article	IF	CITATIONS
55	Observation of Rolling Contact Fatigue Cracks by Laminography Using Ultra-bright Synchrotron Radiation. , 2014, 3, 159-164.		7
56	Effects of inclusion size and orientation on rolling contact fatigue crack initiation observed by laminography using ultra-bright synchrotron radiation. Procedia Structural Integrity, 2016, 2, 3117-3124.	0.8	7
57	Short surface crack growth of a high-strength low-alloy steel under cyclic loading in 3.5% NaCl solution Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1989, 55, 1724-1732.	0.2	6
58	Environment-Assisted Cracking of Zr-Based Bulk Metallic Glass. Materials Science Forum, 2007, 561-565, 1279-1282.	0.3	6
59	Observation of Fatigue Crack Propagation Behavior under Torsional Loading by Using Synchrotron Radiation Micro-CT Imaging. Procedia Engineering, 2011, 10, 1479-1484.	1.2	6
60	Development of Fatigue Test Method and Size Effect of Fatigue Strength in Metallic Thin Wires. Zairyo/Journal of the Society of Materials Science, Japan, 2005, 54, 284-289.	0.2	6
61	Prediction of growth rate of short fatigue cracks Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1987, 53, 387-392.	0.2	5
62	Microscopic and Mesoscopic Evaluations of Materials. Observation of Fatigue Crack Initiation Process in .ALPHABrass by AFM Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1999, 65, 483-490.	0.2	5
63	Observations of fatigue slip-bands and stage I crack-initiation process in $\hat{I}\pm$ -brass using scanning atomic-force microscopy. , 1999, , 343-352.		5
64	Observations of Fatigue Slip-Band Growth and Crack Initiation in .ALPHABrass under Cyclic Shear Stresses by Means of Atomic-Force Microscopy. Zairyo/Journal of the Society of Materials Science, Japan, 2003, 52, 625-630.	0.2	5
65	Recent Progress of Experimental and Measuring Technology. Quantitative Evaluation of Slip-Band Growth and Crack Initiation in Fatigue of 70-30 Brass by Means of Atomic-Force Microscopy Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2001, 67, 476-482.	0.2	4
66	Notched Fatigue of Zr-Based Bulk Metallic Glass. Key Engineering Materials, 2007, 345-346, 259-262.	0.4	4
67	Misorientation Measurement of Individual Grains in Fatigue of Polycrystalline Alloys by Diffraction Contrast Tomography Using Ultrabright Synchrotron Radiation. Materials Science Forum, 2016, 879, 1355-1360.	0.3	4
68	Effects of Grain Size and Grain Boundary Stability on Mechanical and Fatigue Properties of Nanocrystalline Nickel Thin Films. Materials Transactions, 2021, 62, 1320-1327.	1.2	4
69	Title is missing!. Zairyo/Journal of the Society of Materials Science, Japan, 1982, 31, 1121-1127.	0.2	4
70	Strength of interface in stainless clad steels Zairyo/Journal of the Society of Materials Science, Japan, 1990, 39, 375-381.	0.2	4
71	Interfacial Fracture Toughness Evaluation of Poly(L-lactide acid)/Natural Fiber Composite by Using Double Shear Test Method. Open Journal of Composite Materials, 2014, 04, 97-105.	0.8	4
72	Simple formulae of stress intensity factor for cracks emanating from notches Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1984, 50, 2017-2021.	0.2	3

Υοςηικάζυ Νάκαι

#	Article	IF	CITATIONS
73	Measurement of short surface crack lengths by an AC potential method Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1989, 55, 543-549.	0.2	3
74	Special Issue on Fracture Mechanics. Effects of Frequency and Temperature on Delamination Fatigue Crack Growth of Unidirectional CFRP under Constant .DELTA.K Conditions Zairyo/Journal of the Society of Materials Science, Japan, 1994, 43, 1258-1263.	0.2	3
75	Electroreflectance and photoluminescence studies on thermally oxidized porous silicon. Physica Status Solidi A, 2003, 197, 482-486.	1.7	3
76	Observations of corrosion pits and cracks in corrosion fatigue of high strength aluminum alloy by computed-tomography using synchrotron radiation. EPJ Web of Conferences, 2010, 6, 35004.	0.3	3
77	Fatigue of Zr-based Bulk Metallic Glass under Cyclic-torsion. Procedia Engineering, 2011, 10, 183-188.	1.2	3
78	Evaluation of Fatigue Damage by Diffraction Contrast Tomography Using Synchrotron Radiation. Advanced Materials Research, 0, 891-892, 600-605.	0.3	3
79	Stress Ratio Effect on Fatigue Crack Initiation Mechanism of Magnesium Alloy AZ31. Materials Science Forum, 0, 1016, 1003-1008.	0.3	3
80	Scanning Atomic-Force Microscopy on Initiation and Growth Behavior of Fatigue Slip-Bands in α-Brass. , 0, , 122-122-14.		3
81	Fatigue Strength of Notched Components of Zr-Based Bulk Metallic Glass. Zairyo/Journal of the Society of Materials Science, Japan, 2010, 59, 104-109.	0.2	3
82	Effect of Hydrogen Absorption on Mechanical Properties of TiNi Shape Memory Alloy Thin Wire. Zairyo/Journal of the Society of Materials Science, Japan, 2012, 61, 905-911.	0.2	3
83	717 Fatigue Crack Initiation Mechanism In Zr-based Bulk Metallic Glass. The Proceedings of Conference of Kansai Branch, 2006, 2006.81, _7-17	0.0	3
84	Effects of Frequency and Temperature on Deamination Crack Growth of Unidirectional CFRP under Cyclic Loading Zairyo/Journal of the Society of Materials Science, Japan, 1993, 42, 384-390.	0.2	3
85	Near-Threshold Fatigue Crack Growth Behavior of SUS304 Steel at High Temperatures Using Interferometric Strain/Displacement Gage. 1st Report, Crack Closure Behavior JSME International Journal Series A-Solid Mechanics and Material Engineering, 1999, 42, 90-96.	0.4	2
86	Observation of fretting fatigue cracks by micro-computed-tomography using ultrabright synchrotron radiation. , 2009, , .		2
87	Fatigue strength of sharp notched plate of Zr-based bulk metallic glass. Procedia Engineering, 2010, 2, 147-154 Observation of crack propagation under torsion fatigue tests by synchrotron radiation <mml:math< td=""><td>1.2</td><td>2</td></mml:math<>	1.2	2
88	altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"	1.2	2
89	xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.els. Procedia Engine Observation of the initial process of internal fracture in very high cycle fatigue in Ti-6Al-4V by synchrotron radiation 14CT imaging. Transactions of the JSME (in Japanese), 2017, 83, 17-00104-17-00104.	0.2	2
90	Recent Trends of Fatigue Research. Zairyo/Journal of the Society of Materials Science, Japan, 2017, 66, 621-626.	0.2	2

#	Article	IF	CITATIONS
91	Mechanism of Fatigue Crack Initiation and Propagation in Commercially Pure Titanium and Titanium Alloy with Bimodal Harmonic Structure. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2019, 66, 97-102.	0.2	2
92	Compliance method to measure crack length and crack closure for automated fatigue crack propagation test of nanocrystalline nickel film. Engineering Fracture Mechanics, 2021, 254, 107925.	4.3	2
93	Classification of Î ³ -Î ³ and Î ³ -α2 lamellar boundaries on the basis of continuity of strains and slip-twinning planes in fatigued TiAl polysynthetically twinned crystals. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2001, 81, 1447-1471.	0.6	2
94	Three-Dimensional Micromechanics Analysis of Strain Energy Release Rate Distribution along Delamination Crack Front in FRP. , 2004, , 439-444.		2
95	Evaluation of Fiber/Matrix Interfacial Fracture Toughness and Its Contribution to Composite Toughness by Using Two and Four-Fibers Model Composite Specimens. Zairyo/Journal of the Society of Materials Science, Japan, 2008, 57, 1205-1211.	0.2	2
96	Inclusion orientation dependent flaking process in rolling contact fatigue observed by laminography using ultrabright synchrotron radiation Xâ€ray. Fatigue and Fracture of Engineering Materials and Structures, 2022, 45, 2200-2214.	3.4	2
97	Elastic-plastic fatigue crack propagation from notches Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1985, 51, 2067-2075.	0.2	1
98	Short Surface Crack Growth of High-Strength Aluminum Alloy in Corrosion Fatigue Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1992, 58, 359-366.	0.2	1
99	Effects of Stress Ratio and Oxygen Concentration on Short Surface Crack Growth of High-Strength Aluminum Alloy in Corrosion Fatigue Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1994, 60, 1503-1509.	0.2	1
100	Near-Threshold Fatigue Crack Growth Behavior of SUS304 Steel at High Temperatures Using Interferometric Strain/Displacement Gage. 2nd Report, Fatigue Crack Growth Behavior JSME International Journal Series A-Solid Mechanics and Material Engineering, 1999, 42, 97-103.	0.4	1
101	Effect of Surface Treatment for Fibers on Fatigue Behavior of (GF/PP) Fuel-Injection Short-Fiber Reinforced Plastics Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1999, 65, 643-648.	0.2	1
102	Fatigue Crack Initiation and Propagation at a Sharp Notch in Zr-Based Bulk Metallic Glass. Materials Science Forum, 2010, 638-642, 1659-1664.	0.3	1
103	OS12-6-1 Fracture Mechanics Evaluation of Mode I and Mode II Fiber/Matrix Interfacial Crack by Using Real-Size Model Composite. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2011, 2011.10, _OS12-6-1	0.0	1
104	Effect of Yield Phenomenon on Fatigue Damage in Commercially Pure Iron Thin Wires. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2011, 77, 2098-2106.	0.2	1
105	Evaluation of Fatigue Damage by Diffraction Contrast Tomography Using Synchrotron Radiation. Materials Science Forum, 0, 783-786, 2359-2364.	0.3	1
106	4D analysis of pit growth and crack initiation in aluminum alloy under corrosion fatigue using synchrotron radiation micro CT imaging. Keikinzoku/Journal of Japan Institute of Light Metals, 2014, 64, 564-569.	0.4	1
107	Observation of Flaking Process in Rolling Contact Fatigue by Laminography Using Ultra-bright Synchrotron Radiation. MATEC Web of Conferences, 2018, 165, 11002.	0.2	1

108 Fatigue crack propagation in aqueous environments. , 1994, , 1243-1275.

1

#	Article	IF	CITATIONS
109	æ§‹é€ç"¨ä¼źŽç,ç´é‹¼ã®ã,¢ã,³ãf¼ã,¹ãf†ã,£ãffã,¯ãf»ã,¨ãfŸãffã,•ãf§ãf³ã•ãè£,å…^端ã®å¡'性å‱å½¢. Zairyo	/Jouornalo	of the Society o

110 ç-²åŠ´ã₽基çŽãã•æœ€è¿ʿã₽話題 2. ç-²åŠ´ç¾è±¡ã₽å¾®è¦-çš,,観å⁻Ÿ. Zairyo/Journal of the Society of Materialo. Science, Japan, 200

111	Detection and Observation of Fatigue Damage in Metallic Thin Wires with an A.C. Potential Method and a Digital Microscopy. Zairyo/Journal of the Society of Materials Science, Japan, 2005, 54, 1047-1051.	0.2	1
112	OS3-3-1 Fatigue Damage Evaluation of SUS304 Steel Using Magnetism Change in Fatigue Process. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2007, 2007.6, _OS3-3-1-1OS3-3-1-6.	0.0	1
113	FATIGUE AND FRACTURE RESISTANCE OF INTERFACIAL CRACKS IN CLAD STEELS. , 1992, , 451-456.		1
114	Effect of Temperature Change on Delamination Crack Growth of Unidirectional CFRP under Cyclic Loading. , 1996, , 279-284.		1
115	Fatigue. Effects of Fiber Orientation and Specimen Width on Delamination Fatigue Crack Growth in CFRP Laminates Zairyo/Journal of the Society of Materials Science, Japan, 1997, 46, 1210-1216.	0.2	1
116	Closure and growth behavior of short fatigue cracks at notches in 3% silicon iron Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1988, 54, 196-204.	0.2	0
117	Near-Threshold Fatigue Crack Growth Behavior of SUS304 Steel at High Temperatures Using Interferometric Strain/Displacement Gage. 1st Report. Crack Closure Behavior Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1997, 63, 1159-1165.	0.2	0
118	Near-Threshold Fatigue Crack Growth Behavior of SUS304 Steel at High Temperatures Using Interferometric Strain/Displacement Gage. 2nd Report. Fatigue Crack Growth Behavior Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1997, 63, 1166-1171.	0.2	0
119	Delamination Crack Growth of Unidirectional CFRP Laminates under Variable Temperature. 1st Report. 130.DEG.C. Cure Type Epoxy Resin Matrix Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1998, 64, 584-589.	0.2	0
120	Effects of Frequency and Environment on Mode II Delamination Fatigue Crack Growth in CFRP Laminates Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2000, 66, 1695-1702.	0.2	0
121	Suppression of Delamination Crack Propagation in Laminated Composites by Using Thin SMA Plates. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2005, 71, 905-912.	0.2	0
122	Evaluation of Mode I Fiber/Matrix Interfacial Fracture Toughness and Matrix Toughness in FRP by Using Real-Size Model Composites. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2011, 77, 882-891.	0.2	0
123	Effect of Inhomogeneity of Zr-Based Bulk Metallic Class Plate on Fatigue Strength under Torsion. Materials Science Forum, 0, 706-709, 1331-1336.	0.3	0
124	Fatigue of Ultra-Fine Grained Î \pm -Brass. Advanced Materials Research, 0, 891-892, 1125-1130.	0.3	0
125	Fatigue Damage Evaluation by Diffraction Contrast Tomography Using Ultra-Bright Synchrotron Radiation. Proceedings (mdpi), 2018, 2, .	0.2	0
126	Effects of Interfacial Adhesive Property and Stress Ratio on Temperature Increase of Short-Fiber Reinforced Thermoplastics under Fatigue Loading. Journal of the Adhesion Society of Japan, 2002, 38, 116-123.	0.0	0

#	Article	IF	CITATIONS
127	OS5(2)-6(OS05W0361) Characterization of Fatigue Crack Initiation in α-Brass by Means of AFM and EBSP. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2003, 2003, 92.	0.0	0
128	OS09W0347 Suppression effect for mode I propagation of delamination cracks in a laminated composite by using thin SMA plates. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2003, 2003.2, OS09W0347- OS09W0347.	0.0	0
129	OS9(1)-2(OS09W0347) Suppression Effect for Mode I Propagation of Delamination Cracks in a Laminated Composite by Using Thin SMA Plates. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2003, 2003, 120.	0.0	0
130	OS05W0361 Characterization of fatigue crack initiation in α-brass by means of AFM and EBSP. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2003, 2003.2, _OS05W0361OS05W0361.	0.0	0
131	2317 Crack Initiation and Propagation in High Strength Steel under Tortional Fatigue. The Proceedings of the JSME Annual Meeting, 2007, 2007.1, 351-352.	0.0	Ο
132	616 Crack Initiation and Propagation in Zr-based Balk Metallic Glass. The Proceedings of the Materials and Mechanics Conference, 2007, 2007, 457-458.	0.0	0
133	Detection of Defects in Printed Wire by High-Temperature Superconductor SQUID Microscope. Zairyo/Journal of the Society of Materials Science, Japan, 2009, 58, 808-814.	0.2	Ο
134	Environment Assisted Crack Propagation in Zr-Based Bulk Metallic Glass. Zairyo/Journal of the Society of Materials Science, Japan, 2009, 58, 219-224.	0.2	0
135	OS12F018 Fracture Mechanics Evaluation of Mode I and Mode II Fiber/Matrix Interfacial Crack by Using Real-Size Model Composite. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2011, 2011.10, OS12F018 OS12F018	0.0	0
136	OS05-2-3 Development of Three-dimensional Grain Mapping Technique Using SPring-8. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2011, 2011.10, _OS05-2-3	0.0	0
137	OS12-1-3 Effect of Yield Stress on Fatigue Damage in Commercially Pure Iron Thin Wires. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2011, 2011.10, _OS12-1-3	0.0	0
138	OS05-1-2 Evaluation of Torsional Fatigue Crack Propagation by Shinchrotoron Radiation Micro-CT Imaging. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2011, 2011.10, _OS05-1-2	0.0	0
139	OS05-4-3 Observation of Delamination Defects and Cracks in High-strength Steels under Rolling Contact Fatigue by SR Micro CT Imaging. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2011, 2011.10, OS05-4-3	0.0	0
140	Measurements of Mode I Fiber/Matrix Interfacial Fracture Toughness by Using Real-Size Model Composite Specimens. Zairyo/Journal of the Society of Materials Science, Japan, 2012, 61, 183-188.	0.2	0
141	OS1309 Fatigue limit estimation based on dissipated energy for expanded-magnesium alloy. The Proceedings of the Materials and Mechanics Conference, 2013, 2013, _OS1309-1OS1309-3	0.0	0
142	Effect of Surface Treatment for Fibers on Stress Relaxation of Short-Fiber Reinforced Plastics Zairyo/Journal of the Society of Materials Science, Japan, 1998, 47, 484-488.	0.2	0
143	OS4-12 4D Observation of Crack Propagation Benavior under Rolling Contact Fatigue by Synchrotron Radiation Laminography(3D/4D image-based analyses and simulations 4,OS4 3D/4D image-based analyses) Tj E Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2015,	TQq1 1 0.7 0.0	784314 rgB ⁻ 0
144	OS8-17 4D Observations of Pit Growth and Crack Initiation under Corrosion Fatigue of High-strength Aluminum Alloy by Micro CT Imaging Using Ultra-bright Synchrotron Radiation(Environmental effect) Tj ETQq0 International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2015, 2015.14, 127.	0 0 rgBT /C 0.0	Overlock 10 Tf O

Υοςηικάζυ Νάκαι

#	Article	IF	CITATIONS
145	OS8-3 Evaluation of High Cycle Fatigue Damage for Austenitic Stainless Steel by Diffraction Contrast Tomography Using Ultra-bright Synchrotron Radiation(Fatigue monitoring,OS8 Fatigue and fracture) Tj ETQq1 1 Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2015, 2015,14, 113,	0.784314	rgBT /Overlo
146	OS8-13 Effects of Harmonic Structure and Grain Size on Fatigue Crack Propagation of Ti-6Al-4V Alloy(Fatigue crack propagation,OS8 Fatigue and fracture mechanics,STRENGTH OF MATERIALS). The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2015, 2015.14, 123.	0.0	0
147	Study on cell adhesion using plasma surface modification method. The Proceedings of Mechanical Engineering Congress Japan, 2018, 2018, J0270102.	0.0	0
148	Evaluation of misorientation on metal material by Diffraction Contrast Tomography measurement Using Synchrotron Radiation. The Proceedings of the Materials and Mechanics Conference, 2019, 2019, OS1605.	0.0	0
149	Effect of plasma surface modification on cell adhesion to PET material. The Proceedings of Mechanical Engineering Congress Japan, 2019, 2019, J02305.	0.0	0