Jane Skok

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4380498/publications.pdf Version: 2024-02-01

	117625	85541
5,677	34	71
citations	h-index	g-index
100	100	(051
122	122	6851
docs citations	times ranked	citing authors
	5,677 citations 122 docs citations	5,677 34 citations h-index 122 122 docs citations 122 times ranked

IANE SKOK

#	Article	IF	CITATIONS
1	CRISPR and biochemical screens identify MAZ as a cofactor in CTCF-mediated insulation at Hox clusters. Nature Genetics, 2022, 54, 202-212.	21.4	37
2	Returning to the lab after a career break. Nature Reviews Molecular Cell Biology, 2022, , .	37.0	0
3	The art of chromosome dynamics: an interview with Jane Skok. Epigenomics, 2022, 14, 327-330.	2.1	1
4	Ontogeny and Vulnerabilities of Drug-Tolerant Persisters in HER2+ Breast Cancer. Cancer Discovery, 2022, 12, 1022-1045.	9.4	43
5	Editorial: From chromatin to dynamic loops and liquid-like phases: New views on the cell nucleus. Current Opinion in Cell Biology, 2021, 70, iii-v.	5.4	0
6	Simultaneous Tagmentation-Based Detection of ChIP/ATAC Signal with Sequencing. Methods in Molecular Biology, 2021, 2351, 337-352.	0.9	1
7	Dysregulation of Epigenetic Landscape Uncovered the Mechanisms Underlying the Relapse of Pediatric Acute Lymphoblastic Leukemia with NSD2 Mutation. Blood, 2021, 138, 3297-3297.	1.4	0
8	Scaffold association factor B (SAFB) is required for expression of prenyltransferases and RAS membrane association. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31914-31922.	7.1	9
9	Context-Dependent Requirement of Euchromatic Histone Methyltransferase Activity during Reprogramming to Pluripotency. Stem Cell Reports, 2020, 15, 1233-1245.	4.8	7
10	The Ig heavy chain protein but not its message controls early B cell development. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31343-31352.	7.1	2
11	Defining the relative and combined contribution of CTCF and CTCFL to genomic regulation. Genome Biology, 2020, 21, 108.	8.8	37
12	DNA methylation disruption reshapes the hematopoietic differentiation landscape. Nature Genetics, 2020, 52, 378-387.	21.4	154
13	The novel IncRNA BlackMamba controls the neoplastic phenotype of ALKâ~' anaplastic large cell lymphoma by regulating the DNA helicase HELLS. Leukemia, 2020, 34, 2964-2980.	7.2	13
14	CTCF and CTCFL in cancer. Current Opinion in Genetics and Development, 2020, 61, 44-52.	3.3	48
15	B-1a cells acquire their unique characteristics by bypassing the pre-BCR selection stage. Nature Communications, 2019, 10, 4768.	12.8	49
16	RNA Interactions Are Essential for CTCF-Mediated Genome Organization. Molecular Cell, 2019, 76, 412-422.e5.	9.7	183
17	STEM-17. LOW GRADE ASTROCYTOMA MUTATIONS COOPERATE TO DISRUPT SOX2 GENOMIC ARCHITECTURE AND BLOCK DIFFERENTIATION VIA PREVIOUSLY UNIDENTIFIED ENHANCER ELEMENTS. Neuro-Oncology, 2019, 21, vi237-vi237.	1.2	0
18	EpiMethylTag: simultaneous detection of ATAC-seq or ChIP-seq signals with DNA methylation. Genome Biology, 2019, 20, 248.	8.8	27

Jane Skok

#	Article	IF	CITATIONS
19	NSD2 overexpression drives clustered chromatin and transcriptional changes in a subset of insulated domains. Nature Communications, 2019, 10, 4843.	12.8	57
20	Impaired Expression of Rearranged Immunoglobulin Genes and Premature p53 Activation Block B Cell Development in BMI1 Null Mice. Cell Reports, 2019, 26, 108-118.e4.	6.4	10
21	Enhancer talk. Epigenomics, 2018, 10, 483-498.	2.1	32
22	Control of B-1a cell development by instructive BCR signaling. Current Opinion in Immunology, 2018, 51, 24-31.	5.5	29
23	Chromatin Folding and Recombination. , 2018, , 475-492.		0
24	Analysis of 3D genomic interactions identifies candidate host genes that transposable elements potentially regulate. Genome Biology, 2018, 19, 216.	8.8	38
25	Stage-specific epigenetic regulation of CD4 expression by coordinated enhancer elements during T cell development. Nature Communications, 2018, 9, 3594.	12.8	29
26	Capturing the Onset of PRC2-Mediated Repressive Domain Formation. Molecular Cell, 2018, 70, 1149-1162.e5.	9.7	222
27	Wolf-Hirschhorn Syndrome Candidate 1 Is Necessary for Correct Hematopoietic and B Cell Development. Cell Reports, 2017, 19, 1586-1601.	6.4	28
28	The Conserved ATM Kinase RAG2-S365 Phosphorylation Site Limits Cleavage Events in Individual Cells Independent of Any Repair Defect. Cell Reports, 2017, 21, 979-993.	6.4	6
29	Low-Grade Astrocytoma Mutations in IDH1, P53, and ATRX Cooperate to Block Differentiation of Human Neural Stem Cells via Repression of SOX2. Cell Reports, 2017, 21, 1267-1280.	6.4	95
30	The IgH locus 3′ cis-regulatory super-enhancer co-opts AID for allelic transvection. Oncotarget, 2017, 8, 12929-12940.	1.8	14
31	4C-ker: A Method to Reproducibly Identify Genome-Wide Interactions Captured by 4C-Seq Experiments. PLoS Computational Biology, 2016, 12, e1004780.	3.2	84
32	A Damage-Independent Role for 53BP1 that Impacts Break Order and Igh Architecture during Class Switch Recombination. Cell Reports, 2016, 16, 48-55.	6.4	29
33	MED12 Regulates HSC-Specific Enhancers Independently of Mediator Kinase Activity to Control Hematopoiesis. Cell Stem Cell, 2016, 19, 784-799.	11.1	88
34	miRNAs Are Essential for the Regulation of the PI3K/AKT/FOXO Pathway and Receptor Editing during BÂCell Maturation. Cell Reports, 2016, 17, 2271-2285.	6.4	34
35	Identification of multi-loci hubs from 4C-seq demonstrates the functional importance of simultaneous interactions. Nucleic Acids Research, 2016, 44, 8714-8725.	14.5	47
36	CRISPR-dCas9 and sgRNA scaffolds enable dual-colour live imaging of satellite sequences and repeat-enriched individual loci. Nature Communications, 2016, 7, 11707.	12.8	119

JANE SKOK

#	Article	IF	CITATIONS
37	Active and Inactive Enhancers Cooperate to Exert Localized and Long-Range Control of Gene Regulation. Cell Reports, 2016, 15, 2159-2169.	6.4	35
38	Mediator facilitates transcriptional activation and dynamic long-range contacts at the IgH locus during class switch recombination. Journal of Experimental Medicine, 2016, 213, 303-312.	8.5	37
39	Regulation of Igh Recombination and Allelic Exclusion. , 2016, , 64-70.		0
40	RAG Off-Target Activity Is in the Loop. Trends in Molecular Medicine, 2015, 21, 733-735.	6.7	2
41	V _H replacement in primary immunoglobulin repertoire diversification. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E458-66.	7.1	19
42	CTCF establishes discrete functional chromatin domains at the <i>Hox</i> clusters during differentiation. Science, 2015, 347, 1017-1021.	12.6	490
43	Breaking TADs: insights into hierarchical genome organization. Epigenomics, 2015, 7, 523-526.	2.1	50
44	Long-Range Regulation of V(D)J Recombination. Advances in Immunology, 2015, 128, 123-182.	2.2	65
45	Cohesin loss alters adult hematopoietic stem cell homeostasis, leading to myeloproliferative neoplasms. Journal of Experimental Medicine, 2015, 212, 1833-1850.	8.5	145
46	Cohesin loss alters adult hematopoietic stem cell homeostasis, leading to myeloproliferative neoplasms. Journal of Cell Biology, 2015, 211, 2111OIA225.	5.2	0
47	Interpreting 4C-Seq data: how far can we go?. Epigenomics, 2014, 6, 455-457.	2.1	11
48	Taking a break from the lab: can it really be done?. Trends in Cell Biology, 2014, 24, 725-726.	7.9	0
49	β-Catenin induces T-cell transformation by promoting genomic instability. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 391-396.	7.1	71
50	The Impact of Nuclear Organization and Homolgous Recombination in Repair of DNA Damage Introduced By Aid during Class Switch Recombination. Blood, 2014, 124, 2738-2738.	1.4	0
51	The RAG2 C-terminus and ATM protect genome integrity by controlling antigen receptor gene cleavage. Nature Communications, 2013, 4, 2231.	12.8	35
52	Higher-Order Looping and Nuclear Organization of Tcra Facilitate Targeted RAG Cleavage and Regulated Rearrangement in Recombination Centers. Cell Reports, 2013, 3, 359-370.	6.4	40
53	Finding the Right Partner in a 3D Genome. Science, 2013, 342, 1333-1334.	12.6	6
54	Response to Casellas etÂal Molecular Cell, 2013, 51, 277-278.	9.7	2

JANE SKOK

#	Article	IF	CITATIONS
55	The origin of recurrent translocations in recombining lymphocytes: a balance between break frequency and nuclear proximity. Current Opinion in Cell Biology, 2013, 25, 365-371.	5.4	11
56	Combined Immunofluorescence and DNA FISH on 3D-preserved Interphase Nuclei to Study Changes in 3D Nuclear Organization. Journal of Visualized Experiments, 2013, , e50087.	0.3	27
57	A New Take on V(D)J Recombination: Transcription Driven Nuclear and Chromatin Reorganization in Rag-Mediated Cleavage. Frontiers in Immunology, 2013, 4, 423.	4.8	19
58	Equal opportunity for all. EMBO Journal, 2012, 31, 1627-1629.	7.8	4
59	Close Proximity to Igh Is a Contributing Factor to AID-Mediated Translocations. Molecular Cell, 2012, 47, 873-885.	9.7	57
60	The role of CTCF in regulating V(D)J recombination. Current Opinion in Immunology, 2012, 24, 153-159.	5.5	48
61	IL-7 Functionally Segregates the Pro-B Cell Stage by Regulating Transcription of Recombination Mediators across Cell Cycle. Journal of Immunology, 2012, 188, 6084-6092.	0.8	37
62	The RAG2 C terminus suppresses genomic instability and lymphomagenesis. Nature, 2011, 471, 119-123.	27.8	96
63	RUNX Transcription Factor-Mediated Association of Cd4 and Cd8 Enables Coordinate Gene Regulation. Immunity, 2011, 34, 303-314.	14.3	32
64	A Multifunctional Element in the Mouse <i>lgκ</i> Locus That Specifies Repertoire and <i>lg</i> Loci Subnuclear Location. Journal of Immunology, 2011, 186, 5356-5366.	0.8	72
65	Control of RAG Cleavage Activity Contributes to Maintaining Genome Stability During V(D)J Recombination. Blood, 2011, 118, 2416-2416.	1.4	0
66	Chromosome dynamics and the regulation of <i>V(D)J</i> recombination. Immunological Reviews, 2010, 237, 43-54.	6.0	41
67	V(D)J recombination: a paradigm for studying chromosome interactions in mammalian cells. Epigenomics, 2010, 2, 175-177.	2.1	1
68	It takes two. Nucleus, 2010, 1, 23-29.	2.2	19
69	Epigenetic regulation of V(D)J recombination. Essays in Biochemistry, 2010, 48, 221-243.	4.7	18
70	RAG-1 and ATM coordinate monoallelic recombination and nuclear positioning of immunoglobulin loci. Nature Immunology, 2009, 10, 655-664.	14.5	130
71	Association between the Igk and Igh immunoglobulin loci mediated by the 3′ Igk enhancer induces 'decontraction' of the Igh locus in pre–B cells. Nature Immunology, 2008, 9, 396-404.	14.5	79
72	Regulation of Immunoglobulin Light-Chain Recombination by the Transcription Factor IRF-4 andÂthe Attenuation of Interleukin-7 Signaling. Immunity, 2008, 28, 335-345.	14.3	167

JANE SKOK

#	Article	IF	CITATIONS
73	Jane Skok: Choreography of allelic exclusion. Journal of Experimental Medicine, 2008, 205, 1514-1515.	8.5	О
74	Silencing and Nuclear Repositioning of the λ5 Gene Locus at the Pre-B Cell Stage Requires Aiolos and OBF-1. PLoS ONE, 2008, 3, e3568.	2.5	19
75	Dynamic Changes in Accessibility, Nuclear Positioning, Recombination, and Transcription at the IgÎ ^º Locus. Journal of Immunology, 2007, 179, 5264-5273.	0.8	35
76	Yin Yang 1 is a critical regulator of B-cell development. Genes and Development, 2007, 21, 1179-1189.	5.9	223
77	Reversible contraction by looping of the Tcra and Tcrb loci in rearranging thymocytes. Nature Immunology, 2007, 8, 378-387.	14.5	143
78	Transcriptional regulation in early B cell development. Current Opinion in Immunology, 2007, 19, 129-136.	5.5	46
79	Locus 'decontraction' and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. Nature Immunology, 2005, 6, 31-41.	14.5	235
80	Epigenetic ontogeny of the Igk locus during B cell development. Nature Immunology, 2005, 6, 198-203.	14.5	152
81	The pre-B-cell receptor induces silencing of VpreB and λ5 transcription. EMBO Journal, 2005, 24, 3895-3905.	7.8	43
82	Pax5 induces <i>V</i> -to- <i>DJ</i> rearrangements and locus contraction of the <i>immunoglobulin heavy-chain</i> gene. Genes and Development, 2004, 18, 411-422.	5.9	357
83	C-Terminal Src Kinase Controls Acute Inflammation and Granulocyte Adhesion. Immunity, 2004, 20, 181-191.	14.3	63
84	Subnuclear Compartmentalization of Immunoglobulin Loci During Lymphocyte Development. Science, 2002, 296, 158-162.	12.6	671
85	Rewiring of CD40 is necessary for delivery of rescue signals to B cells in germinal centres and subsequent entry into the memory pool. Immunology, 2001, 102, 263-272.	4.4	19
86	Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nature Immunology, 2001, 2, 848-854.	14.5	179
87	Distinct genes for fibroblast and serum C1q. Nature, 1981, 292, 549-551.	27.8	37
88	B-1a Cells Acquire Their Unique Characteristics by Bypassing the Pre-BCR Selection Stage. SSRN Electronic Journal, 0, , .	0.4	0