
Kaido Tammeveski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4380162/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxygen electroreduction on small (<10 nm) and {100}-oriented Pt nanoparticles. Electrochimica Acta, 2022, 403, 139631.	5.2	5
2	Mesoporous textured Fe-N-C electrocatalysts as highly efficient cathodes for proton exchange membrane fuel cells. Journal of Power Sources, 2022, 520, 230819.	7.8	46
3	Transition metal and nitrogen-doped mesoporous carbons as cathode catalysts for anion-exchange membrane fuel cells. Applied Catalysis B: Environmental, 2022, 306, 121113.	20.2	42
4	Nitrogen and Phosphorus Dual-Doped Silicon Carbide-Derived Carbon/Carbon Nanotube Composite for the Anion-Exchange Membrane Fuel Cell Cathode. ACS Applied Energy Materials, 2022, 5, 2949-2958.	5.1	21
5	Polypyrrole and Polythiophene Modified Carbon Nanotubeâ€Based Cathode Catalysts for Anion Exchange Membrane Fuel Cell. ChemElectroChem, 2022, 9, .	3.4	9
6	Oxygen reduction reaction on PdM/C (MÂ=ÂPb, Sn, Bi) alloy nanocatalysts. Journal of Electroanalytical Chemistry, 2022, 917, 116391.	3.8	5
7	Morphological influence of graphitic carbon nanofibers by N–F dual-doping on Pt electrocatalytic activity and stability for oxygen reduction reaction in polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2022, 47, 20617-20631.	7.1	11
8	Cobalt-Containing Nitrogen-Doped Carbon Materials Derived from Saccharides as Efficient Electrocatalysts for Oxygen Reduction Reaction. Catalysts, 2022, 12, 568.	3.5	3
9	Ultrafiltration membrane bioâ€fuel cell as an energyâ€efficient advanced wastewater treatment system. International Journal of Energy Research, 2022, 46, 20216-20227.	4.5	6
10	Electroreduction of oxygen on iron- and cobalt-containing nitrogen-doped carbon catalysts prepared from the rapeseed press cake. Journal of Electroanalytical Chemistry, 2022, 920, 116599.	3.8	4
11	Electroreduction of oxygen on cobalt phthalocyanine-modified carbide-derived carbon/carbon nanotube composite catalysts. Journal of Solid State Electrochemistry, 2021, 25, 57-71.	2.5	37
12	Transition metal-containing nitrogen-doped nanocarbon catalysts derived from 5-methylresorcinol for anion exchange membrane fuel cell application. Journal of Colloid and Interface Science, 2021, 584, 263-274.	9.4	50
13	Transition metal phthalocyanine-modified shungite-based cathode catalysts for alkaline membrane fuel cell. International Journal of Hydrogen Energy, 2021, 46, 4365-4377.	7.1	36
14	Non-precious metal cathodes for anion exchange membrane fuel cells from ball-milled iron and nitrogen doped carbide-derived carbons. Renewable Energy, 2021, 167, 800-810.	8.9	50
15	Enhanced oxygen reduction reaction activity and durability of Pt nanoparticles deposited on graphene-coated alumina nanofibres. Nanoscale Advances, 2021, 3, 2261-2268.	4.6	5
16	Transition-Metal- and Nitrogen-Doped Carbide-Derived Carbon/Carbon Nanotube Composites as Cathode Catalysts for Anion-Exchange Membrane Fuel Cells. ACS Catalysis, 2021, 11, 1920-1931.	11.2	85
17	Oxygen reduction on silver catalysts electrodeposited on various nanocarbon supports. SN Applied Sciences, 2021, 3, 1.	2.9	17
18	Shungite-derived graphene as a carbon support for bifunctional oxygen electrocatalysts. Journal of Catalysis, 2021, 395, 178-187.	6.2	11

#	Article	IF	CITATIONS
19	Bifunctional multi-metallic nitrogen-doped nanocarbon catalysts derived from 5-methylresorcinol. Electrochemistry Communications, 2021, 124, 106932.	4.7	16
20	Silicon carbide-derived carbon electrocatalysts dual doped with nitrogen and phosphorus for the oxygen reduction reaction in an alkaline medium. Electrochemistry Communications, 2021, 125, 106976.	4.7	24
21	Mesoporous iron-nitrogen co-doped carbon material as cathode catalyst for the anion exchange membrane fuel cell. Journal of Power Sources Advances, 2021, 8, 100052.	5.1	43
22	Iron ontaining Nitrogenâ€Doped Carbon Nanomaterials Prepared via NaCl Template as Efficient Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2021, 8, 2288-2297.	3.4	7
23	Bimetal Phthalocyanineâ€Modified Carbon Nanotubeâ€Based Bifunctional Catalysts for Zincâ€Air Batteries. ChemElectroChem, 2021, 8, 2662-2670.	3.4	34
24	Silver Nanowireâ€Based Catalysts for Oxygen Reduction Reaction in Alkaline Solution. ChemCatChem, 2021, 13, 4364-4371.	3.7	10
25	Bifunctional Oxygen Electrocatalysis on Mixed Metal Phthalocyanine-Modified Carbon Nanotubes Prepared via Pyrolysis. ACS Applied Materials & Interfaces, 2021, 13, 41507-41516.	8.0	65
26	High oxygen reduction reaction activity and durability of Pt catalyst photo-deposited on SnO2-coated and uncoated multi-walled carbon nanotubes. Journal of Electroanalytical Chemistry, 2021, 896, 115147.	3.8	2
27	Enhancing the electrocatalytic activity of Fe phthalocyanines for the oxygen reduction reaction by the presence of axial ligands: Pyridine-functionalized single-walled carbon nanotubes. Electrochimica Acta, 2021, 398, 139263.	5.2	27
28	Iron and cobalt containing electrospun carbon nanofibre-based cathode catalysts for anion exchange membrane fuel cell. International Journal of Hydrogen Energy, 2021, 46, 31275-31287.	7.1	30
29	Oxygen reduction reaction on Pd nanoparticles supported on novel mesoporous carbon materials. Electrochimica Acta, 2021, 394, 139132.	5.2	14
30	Oxygen reduction reaction on Pd nanocatalysts prepared by plasma-assisted synthesis on different carbon nanomaterials. Nanotechnology, 2021, 32, 035401.	2.6	8
31	Transition Metal and Nitrogen-Doped Carbide-Derived Carbon/Carbon Nanotube Composites As Cathode Catalysts for Anion-Exchange Membrane Fuel Cells. ECS Meeting Abstracts, 2021, MA2021-02, 1213-1213.	0.0	1
32	One-dimensional polymer-derived ceramic nanowires with electrocatalytically active metallic silicide tips as cathode catalysts for Zn–air batteries. RSC Advances, 2021, 11, 39707-39717.	3.6	8
33	Electrocatalytic oxygen reduction reaction on iron phthalocyanine-modified carbide-derived carbon/carbon nanotube composite electrocatalysts. Electrochimica Acta, 2020, 334, 135575.	5.2	50
34	Fused Hybrid Linkers for Metal–Organic Framework-Derived Bifunctional Oxygen Electrocatalysts. ACS Applied Energy Materials, 2020, 3, 152-157.	5.1	19
35	Is the H2 economy realizable in the foreseeable future? Part III: H2 usage technologies, applications, and challenges and opportunities. International Journal of Hydrogen Energy, 2020, 45, 28217-28239.	7.1	139
36	Oxygen reduction reaction on nanostructured Pt-based electrocatalysts: A review. International Journal of Hydrogen Energy, 2020, 45, 31775-31797.	7.1	127

#	Article	IF	CITATIONS
37	Impact of ball-milling of carbide-derived carbons on the generation of hydrogen peroxide via electroreduction of oxygen in alkaline media. Journal of Electroanalytical Chemistry, 2020, 878, 114690.	3.8	19
38	Cathode Catalysts Based on Cobalt- and Nitrogen-Doped Nanocarbon Composites for Anion Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2020, 3, 5375-5384.	5.1	61
39	Is the H2 economy realizable in the foreseeable future? Part II: H2 storage, transportation, and distribution. International Journal of Hydrogen Energy, 2020, 45, 20693-20708.	7.1	129
40	Electrospun Polyacrylonitrileâ€Derived Co or Fe Containing Nanofibre Catalysts for Oxygen Reduction Reaction at the Alkaline Membrane Fuel Cell Cathode. ChemCatChem, 2020, 12, 4568-4581.	3.7	31
41	Effects of N and O groups for oxygen reduction reaction on one- and two-dimensional carbonaceous materials. Electrochimica Acta, 2020, 344, 136052.	5.2	23
42	Iron―and Nitrogenâ€Doped Grapheneâ€Based Catalysts for Fuel Cell Applications. ChemElectroChem, 2020, 7, 1739-1747.	3.4	53
43	Electroreduction of Oxygen on Carbideâ€Derived Carbon Supported Pd Catalysts. ChemElectroChem, 2020, 7, 546-554.	3.4	10
44	Nitrogen-doped carbide-derived carbon/carbon nanotube composites as cathode catalysts for anion exchange membrane fuel cell application. Applied Catalysis B: Environmental, 2020, 272, 119012.	20.2	72
45	Is the H2 economy realizable in the foreseeable future? Part I: H2 production methods. International Journal of Hydrogen Energy, 2020, 45, 13777-13788.	7.1	186
46	Platinum Sputtered on Nb-doped TiO ₂ Films Prepared by ALD: Highly Active and Durable Carbon-free ORR Electrocatalyst. Journal of the Electrochemical Society, 2020, 167, 164505.	2.9	13
47	Transition Metal-Containing Nitrogen-Doped Nanocarbons Derived from 5-Methylresorcinol for Anion Exchange Membrane Fuel Cell Application. ECS Meeting Abstracts, 2020, MA2020-02, 2361-2361.	0.0	0
48	Electroreduction of oxygen on Nafion®-coated thin platinum films in acid media. Journal of Electroanalytical Chemistry, 2019, 848, 113292.	3.8	14
49	Sulphur and nitrogen co-doped graphene-based electrocatalysts for oxygen reduction reaction in alkaline medium. Electrochemistry Communications, 2019, 109, 106603.	4.7	46
50	Effect of Ball-Milling on the Oxygen Reduction Reaction Activity of Iron and Nitrogen Co-doped Carbide-Derived Carbon Catalysts in Acid Media. ACS Applied Energy Materials, 2019, 2, 7952-7962.	5.1	36
51	Oxygen reduction reaction on thin-film Ag electrodes in alkaline solution. Electrochimica Acta, 2019, 325, 134922.	5.2	28
52	Electroreduction of oxygen in alkaline solution on iron phthalocyanine modified carbide-derived carbons. Electrochimica Acta, 2019, 299, 999-1010.	5.2	34
53	Polymer-derived Co/Ni–SiOC(N) ceramic electrocatalysts for oxygen reduction reaction in fuel cells. Catalysis Science and Technology, 2019, 9, 854-866.	4.1	30
54	Platinum nanoparticles photo-deposited on SnO2-C composites: An active and durable electrocatalyst for the oxygen reduction reaction. Electrochimica Acta, 2019, 316, 162-172.	5.2	48

#	Article	IF	CITATIONS
55	Electrocatalysts for oxygen reduction reaction based on electrospun polyacrylonitrile, styrene–acrylonitrile copolymer and carbon nanotube composite fibres. Journal of Materials Science, 2019, 54, 11618-11634.	3.7	28
56	Improved ORR Activity and Long-Term Durability of Pt Nanoparticles Deposited on TiO ₂ -Decorated Multiwall Carbon Nanotubes. Journal of the Electrochemical Society, 2019, 166, F1284-F1291.	2.9	22
57	Multi-walled carbon nanotube and carbide-derived carbon supported metal phthalocyanines as cathode catalysts for microbial fuel cell applications. Sustainable Energy and Fuels, 2019, 3, 3525-3537.	4.9	40
58	Oxygen Reduction Reaction on Silver Catalysts in Alkaline Media: a Minireview. ChemElectroChem, 2019, 6, 73-86.	3.4	110
59	Electrochemical reduction of oxygen in alkaline solution on Pd/C catalysts prepared by electrodeposition on various carbon nanomaterials. Journal of Electroanalytical Chemistry, 2019, 834, 223-232.	3.8	19
60	High performance catalysts based on Fe/N co-doped carbide-derived carbon and carbon nanotube composites for oxygen reduction reaction in acid media. International Journal of Hydrogen Energy, 2019, 44, 12636-12648.	7.1	38
61	Pt nanoparticles sputter-deposited on TiO2/MWCNT composites prepared by atomic layer deposition: Improved electrocatalytic activity towards the oxygen reduction reaction and durability in acid media. International Journal of Hydrogen Energy, 2018, 43, 4967-4977.	7.1	26
62	In situ investigation of poly(3,4-ethylenedioxythiophene) film growth during liquid phase deposition polymerization. Thin Solid Films, 2018, 653, 274-283.	1.8	3
63	Iron and Nitrogen Coâ€doped Carbideâ€Derived Carbon and Carbon Nanotube Composite Catalysts for Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 1827-1836.	3.4	42
64	Electrocatalytic oxygen reduction on transition metal macrocyclic complexes for anion exchange membrane fuel cell application. Current Opinion in Electrochemistry, 2018, 9, 207-213.	4.8	44
65	Surface and electrochemical characterization of aryl films grafted on polycrystalline copper from the diazonium compounds using the rotating disk electrode method. Journal of Electroanalytical Chemistry, 2018, 817, 89-100.	3.8	11
66	Oxygen reduction on graphene sheets functionalised by anthraquinone diazonium compound during electrochemical exfoliation of graphite. Electrochimica Acta, 2018, 267, 246-254.	5.2	25
67	Oxygen reduction reaction on electrochemically deposited silver nanoparticles from non-aqueous solution. Journal of Electroanalytical Chemistry, 2018, 810, 129-134.	3.8	23
68	Oxygen Reduction on Catalysts Prepared by Pyrolysis of Electrospun Styrene–Acrylonitrile Copolymer and Multi-walled Carbon Nanotube Composite Fibres. Catalysis Letters, 2018, 148, 1815-1826.	2.6	13
69	Oxygen Reduction on Fe―and Co ontaining Nitrogenâ€Doped Nanocarbons. ChemElectroChem, 2018, 5, 2002-2009.	3.4	20
70	Highly efficient transition metal and nitrogen co-doped carbide-derived carbon electrocatalysts for anion exchange membrane fuel cells. Journal of Power Sources, 2018, 375, 233-243.	7.8	74
71	Oxygen Electroreduction in Alkaline Solution on Pd Coatings Prepared by Galvanic Exchange of Copper. Electrocatalysis, 2018, 9, 400-408.	3.0	13
72	Electrocatalysis of oxygen reduction on heteroatom-doped nanocarbons and transition metal–nitrogen–carbon catalysts for alkaline membrane fuel cells. Journal of Materials Chemistry A, 2018, 6, 776-804.	10.3	357

Kaido Tammeveski

#	Article	IF	CITATIONS
73	Oxygen reduction on electrodeposited silver catalysts in alkaline solution. Journal of Solid State Electrochemistry, 2018, 22, 81-89.	2.5	29
74	Electrocatalysis of Oxygen Reduction on Pristine and Heteroatom-Doped Graphene Materials. , 2018, , 497-506.		6
75	Novel multi walled carbon nanotube based nitrogen impregnated Co and Fe cathode catalysts for improved microbial fuel cell performance. International Journal of Hydrogen Energy, 2018, 43, 23027-23035.	7.1	58
76	Oxygen Reduction on Silver Nanoparticles Supported on Carbide-Derived Carbons. Journal of the Electrochemical Society, 2018, 165, F1199-F1205.	2.9	13
77	Oxygen Reduction on Carbon-Supported Metallophthalocyanines and Metalloporphyrins. , 2018, , 812-819.		9
78	Synthesis of highly-active Fe–N–C catalysts for PEMFC with carbide-derived carbons. Journal of Materials Chemistry A, 2018, 6, 14663-14674.	10.3	94
79	Oxygen Electroreduction on Pt Nanoparticles Deposited on Reduced Graphene Oxide and Nâ€doped Reduced Graphene Oxide Prepared by Plasmaâ€assisted Synthesis in Aqueous Solution. ChemElectroChem, 2018, 5, 2902-2911.	3.4	14
80	Nitrogen-doped carbon-based electrocatalysts synthesised by ball-milling. Electrochemistry Communications, 2018, 93, 39-43.	4.7	47
81	Nonâ€Preciousâ€Metal Oxygen Reduction Reaction Electrocatalysis. ChemElectroChem, 2018, 5, 1743-1744.	3.4	5
82	Electrocatalysis of oxygen reduction by iron-containing nitrogen-doped carbon aerogels in alkaline solution. Electrochimica Acta, 2017, 230, 81-88.	5.2	51
83	Electroreduction of oxygen on nitrogen-doped graphene oxide supported silver nanoparticles. Journal of Electroanalytical Chemistry, 2017, 794, 197-203.	3.8	35
84	Platinum nanoparticles supported on nitrobenzene-functionalised graphene nanosheets as electrocatalysts for oxygen reduction reaction in alkaline media. Electrochemistry Communications, 2017, 81, 79-83.	4.7	16
85	Oxygen Electroreduction on Zinc and Dilithium Phthalocyanine Modified Multiwalled Carbon Nanotubes in Alkaline Media. Journal of the Electrochemical Society, 2017, 164, H338-H344.	2.9	11
86	Heat-treatment effects on the ORR activity of Pt nanoparticles deposited on multi-walled carbon nanotubes using magnetron sputtering technique. International Journal of Hydrogen Energy, 2017, 42, 5958-5970.	7.1	64
87	Stabilizer-free silver nanoparticles as efficient catalysts for electrochemical reduction of oxygen. Journal of Colloid and Interface Science, 2017, 491, 358-366.	9.4	56
88	Stability of Pt Nanoparticles on Alternative Carbon Supports for Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2017, 164, F995-F1004.	2.9	59
89	Loading effect of carbon-supported platinum nanocubes on oxygen electroreduction. Electrochimica Acta, 2017, 251, 155-166.	5.2	28
90	Platinum Particles Electrochemically Deposited on Multiwalled Carbon Nanotubes for Oxygen Reduction Reaction in Acid Media. Journal of the Electrochemical Society, 2017, 164, F1014-F1021.	2.9	19

#	Article	IF	CITATIONS
91	Transition metal-nitrogen co-doped carbide-derived carbon catalysts for oxygen reduction reaction in alkaline direct methanol fuel cell. Applied Catalysis B: Environmental, 2017, 219, 276-286.	20.2	72
92	Electroreduction of Oxygen on PdPt Alloy Nanocubes in Alkaline and Acidic Media. ChemElectroChem, 2017, 4, 2547-2555.	3.4	14
93	Highly efficient nitrogen-doped carbide-derived carbon materials for oxygen reduction reaction in alkaline media. Carbon, 2017, 113, 159-169.	10.3	88
94	Oxygen Reduction on Anthraquinone Diazonium Compound Derivatised Multiâ€walled Carbon Nanotube and Graphene Based Electrodes. Electroanalysis, 2017, 29, 548-558.	2.9	15
95	Porous N,P-doped carbon from coconut shells with high electrocatalytic activity for oxygen reduction: Alternative to Pt-C for alkaline fuel cells. Applied Catalysis B: Environmental, 2017, 204, 394-402.	20.2	294
96	An Oxygen Reduction Study of Graphene-Based Nanomaterials of Different Origin. Catalysts, 2016, 6, 108.	3.5	50
97	Enhanced oxygen reduction reaction activity of nitrogen-doped graphene/multi-walled carbon nanotube catalysts in alkaline media. International Journal of Hydrogen Energy, 2016, 41, 22510-22519.	7.1	74
98	Electrochemical properties of gold and glassy carbon electrodes electrografted with an anthraquinone diazonium compound using the rotating disc electrode method. RSC Advances, 2016, 6, 40982-40990.	3.6	10
99	Electrocatalysis of oxygen reduction on iron- and cobalt-containing nitrogen-doped carbon nanotubes in acid media. Electrochimica Acta, 2016, 218, 303-310.	5.2	42
100	Recent progress in oxygen reduction electrocatalysis on Pd-based catalysts. Journal of Electroanalytical Chemistry, 2016, 780, 327-336.	3.8	77
101	Enhanced oxygen reduction reaction activity of iron-containing nitrogen-doped carbon nanotubes for alkaline direct methanol fuel cell application. Journal of Power Sources, 2016, 332, 129-138.	7.8	86
102	Platinum Nanoparticles Supported on Nitrogen-Doped Graphene Nanosheets as Electrocatalysts for Oxygen Reduction Reaction. Electrocatalysis, 2016, 7, 428-440.	3.0	53
103	Cobalt–Nitrogen Coâ€doped Carbon Nanotube Cathode Catalyst for Alkaline Membrane Fuel Cells. ChemElectroChem, 2016, 3, 1455-1465.	3.4	66
104	Oxygen electroreduction on carbon-supported Pd nanocubes in acid solutions. Electrochimica Acta, 2016, 188, 301-308.	5.2	37
105	Oxygen reduction reaction on carbon-supported palladium nanocubes in alkaline media. Electrochemistry Communications, 2016, 64, 9-13.	4.7	44
106	Electrocatalysis of oxygen reduction on multi-walled carbon nanotube supported copper and manganese phthalocyanines in alkaline media. Journal of Solid State Electrochemistry, 2016, 20, 921-929.	2.5	24
107	Cobaltâ€Containing Nitrogenâ€Doped Carbon Aerogels as Efficient Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2015, 2, 2079-2088.	3.4	46
108	Electrografting and morphological studies of chemical vapour deposition grown graphene sheets modified by electroreduction of aryldiazonium salts. Electrochimica Acta, 2015, 161, 195-204.	5.2	21

#	Article	IF	CITATIONS
109	Highly active nitrogen-doped nanocarbon electrocatalysts for alkaline direct methanol fuel cell. Journal of Power Sources, 2015, 281, 94-102.	7.8	58
110	Enhanced Oxygen Reduction Reaction Activity with Electrodeposited Ag on Manganese Oxide–Graphene Supported Electrocatalyst. Electrocatalysis, 2015, 6, 465-471.	3.0	27
111	Enhanced electrocatalytic activity of nitrogen-doped multi-walled carbon nanotubes towards the oxygen reduction reaction in alkaline media. RSC Advances, 2015, 5, 59495-59505.	3.6	71
112	Nano-electrocatalyst materials for low temperature fuel cells: A review. Chinese Journal of Catalysis, 2015, 36, 458-472.	14.0	58
113	PdPt alloy nanocubes as electrocatalysts for oxygen reduction reaction in acid media. Electrochemistry Communications, 2015, 56, 11-15.	4.7	37
114	Cobalt- and iron-containing nitrogen-doped carbon aerogels as non-precious metal catalysts for electrochemical reduction of oxygen. Journal of Electroanalytical Chemistry, 2015, 746, 9-17.	3.8	74
115	Oxygen electroreduction on MN4-macrocycle modified graphene/multi-walled carbon nanotube composites. Journal of Electroanalytical Chemistry, 2015, 756, 69-76.	3.8	45
116	Oxygen Electroreduction on Electrodeposited PdAu Nanoalloys. Electrocatalysis, 2015, 6, 77-85.	3.0	35
117	Electrochemical Behaviour of HOPG and CVDâ€Grown Graphene Electrodes Modified with Thick Anthraquinone Films by Diazonium Reduction. Electroanalysis, 2014, 26, 2619-2630.	2.9	29
118	Electrocatalytic oxygen reduction on nitrogen-doped graphene in alkaline media. Applied Catalysis B: Environmental, 2014, 147, 369-376.	20.2	215
119	Electrocatalysis of oxygen reduction on glassy carbon electrodes modified with anthraquinone moieties. Journal of Solid State Electrochemistry, 2014, 18, 1725-1733.	2.5	4
120	Electrochemical oxygen reduction behaviour of platinum nanoparticles supported on multi-walled carbon nanotube/titanium dioxide composites. Journal of Electroanalytical Chemistry, 2014, 735, 68-76.	3.8	40
121	Shapeâ€Dependent Electrocatalysis: Oxygen Reduction on Carbonâ€6upported Gold Nanoparticles. ChemElectroChem, 2014, 1, 1338-1347.	3.4	40
122	Highly active nitrogen-doped few-layer graphene/carbon nanotube composite electrocatalyst for oxygen reduction reaction in alkaline media. Carbon, 2014, 73, 361-370.	10.3	251
123	Electroreduction of oxygen on palladium nanoparticles supported on nitrogen-doped graphene nanosheets. Electrochimica Acta, 2014, 137, 206-212.	5.2	66
124	High oxygen reduction activity of few-walled carbon nanotubes with low nitrogen content. Applied Catalysis B: Environmental, 2014, 158-159, 233-241.	20.2	62
125	Electrochemical Reduction of Oxygen on Heat-Treated Pd Nanoparticle/Multi-Walled Carbon Nanotube Composites in Alkaline Solution. Electrocatalysis, 2013, 4, 42-48.	3.0	36
126	Surface and electrochemical characterisation of CVD grown graphene sheets. Electrochemistry Communications, 2013, 35, 26-29.	4.7	22

#	Article	IF	CITATIONS
127	Oxygen reduction on graphene-supported MN4 macrocycles in alkaline media. Electrochemistry Communications, 2013, 33, 18-22.	4.7	92
128	Electrocatalysis of oxygen reduction on nitrogen-containing multi-walled carbon nanotube modified glassy carbon electrodes. Electrochimica Acta, 2013, 87, 709-716.	5.2	114
129	Oxygen reduction on thick anthraquinone films electrografted to glassy carbon. Journal of Electroanalytical Chemistry, 2013, 702, 8-14.	3.8	17
130	OH radical degradation of blocking aryl layers on glassy carbon and gold electrodes leads to film thinning on glassy carbon and pinhole films on gold. Electrochemistry Communications, 2013, 29, 33-36.	4.7	3
131	Electroreduction of oxygen on sputter-deposited Pd nanolayers on multi-walled carbon nanotubes. International Journal of Hydrogen Energy, 2013, 38, 3614-3620.	7.1	48
132	Sputter-deposited Pt nanoparticle/multi-walled carbon nanotube composite catalyst for oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2013, 708, 31-38.	3.8	47
133	Electrochemical Modification of Gold Electrodes with Azobenzene Derivatives by Diazonium Reduction. ChemPhysChem, 2013, 14, 1043-1054.	2.1	13
134	Electrocatalysis of oxygen reduction on electrodeposited Pd coatings on gold. Journal of Electroanalytical Chemistry, 2013, 691, 35-41.	3.8	22
135	Graphene–TiO2 composite supported Pt electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2013, 107, 509-517.	5.2	69
136	Oxygen reduction on electrodeposited Pd coatings on glassy carbon. Electrochimica Acta, 2013, 88, 513-518.	5.2	35
137	Oxygen Electroreduction on Multi-Walled Carbon Nanotube Supported Metal Phthalocyanines and Porphyrins in Alkaline Media. Journal of Nanoscience and Nanotechnology, 2013, 13, 621-627.	0.9	51
138	Oxygen reduction on Pd nanoparticle/multi-walled carbon nanotube composites. Journal of Electroanalytical Chemistry, 2012, 666, 67-75.	3.8	47
139	A study of glassy carbon electrodes modified with azobenzene derivatives. Journal of Electroanalytical Chemistry, 2012, 686, 46-53.	3.8	15
140	Non-platinum cathode catalysts for alkaline membrane fuel cells. International Journal of Hydrogen Energy, 2012, 37, 4406-4412.	7.1	186
141	Electrocatalytic oxygen reduction on silver nanoparticle/multi-walled carbon nanotube modified glassy carbon electrodes in alkaline solution. Electrochemistry Communications, 2012, 20, 15-18.	4.7	109
142	Electrochemical reduction of oxygen on palladium nanocubes in acid and alkaline solutions. Electrochimica Acta, 2012, 59, 329-335.	5.2	141
143	Blocking properties of gold electrodes modified with 4-nitrophenyl and 4-decylphenyl groups. Journal of Solid State Electrochemistry, 2012, 16, 569-578.	2.5	26
144	Electrochemical behaviour of ABTS on aryl-modified glassy carbon electrodes. Journal of Electroanalytical Chemistry, 2011, 661, 343-350.	3.8	13

#	Article	IF	CITATIONS
145	Versatile charge transfer through anthraquinone films for electrochemical sensing applications. Electrochimica Acta, 2011, 56, 8926-8933.	5.2	17
146	Oxygen reduction on Nafion-coated thin-film palladium electrodes. Journal of Electroanalytical Chemistry, 2011, 652, 1-7.	3.8	57
147	Effect of purification of carbon nanotubes on their electrocatalytic properties for oxygen reduction in acid solution. Carbon, 2011, 49, 4031-4039.	10.3	76
148	Enhanced electrocatalytic activity of cubic Pd nanoparticles towards the oxygen reduction reaction in acid media. Electrochemistry Communications, 2011, 13, 734-737.	4.7	108
149	Electroreduction of oxygen on Vulcan carbon supported Pd nanoparticles and Pd–M nanoalloys in acid and alkaline solutions. Electrochimica Acta, 2011, 56, 6702-6708.	5.2	68
150	Corrigendum to "Electrochemical behaviour of glassy carbon electrodes modified with aryl groups― [Electrochim. Acta 56 (2010) 166–173]. Electrochimica Acta, 2011, 56, 3091-3092.	5.2	0
151	Oxygen reduction on carbon nanomaterial-modified glassy carbon electrodes in alkaline solution. Journal of Solid State Electrochemistry, 2010, 14, 1269-1277.	2.5	74
152	Blocking Behavior of Covalently Attached Anthraquinone Towards Solutionâ€Based Redox Probes. Electroanalysis, 2010, 22, 513-518.	2.9	16
153	Electrochemical properties of aryl-modified gold electrodes. Journal of Electroanalytical Chemistry, 2010, 641, 90-98.	3.8	17
154	Kinetics of oxygen reduction on gold nanoparticle/multi-walled carbon nanotube hybrid electrodes in acid media. Journal of Electroanalytical Chemistry, 2010, 642, 6-12.	3.8	14
155	Electroreduction of oxygen on nitrogen-doped carbon nanotube modified glassy carbon electrodes in acid and alkaline solutions. Journal of Electroanalytical Chemistry, 2010, 648, 169-175.	3.8	187
156	Electrochemical reduction of oxygen on double-walled carbon nanotube modified glassy carbon electrodes in acid and alkaline solutions. Electrochemistry Communications, 2010, 12, 920-923.	4.7	42
157	Electroreduction of oxygen on Pt nanoparticle/carbon nanotube nanocomposites in acid and alkaline solutions. Electrochimica Acta, 2010, 55, 794-803.	5.2	74
158	Electroreduction of oxygen on gold-supported nanostructured palladium films in acid solutions. Electrochimica Acta, 2010, 55, 6768-6774.	5.2	49
159	Electrochemical and surface characterisation of gold nanoparticle decorated multi-walled carbon nanotubes. Applied Surface Science, 2010, 256, 3040-3046.	6.1	44
160	Electrocatalysis of oxygen reduction by quinones adsorbed on highly oriented pyrolytic graphite electrodes. Electrochimica Acta, 2010, 55, 6376-6382.	5.2	60
161	Electrochemical behaviour of glassy carbon electrodes modified with aryl groups. Electrochimica Acta, 2010, 56, 166-173.	5.2	19
162	Hydrodynamic Deposition of Carbon Nanotubes onto HOPG: The Reduction of Oxygen on CNT/HOPG Electrodes in Alkaline Solution. Electrochemical and Solid-State Letters, 2009, 12, F31.	2.2	31

Kaido Tammeveski

#	Article	IF	CITATIONS
163	Surface modification of gold electrodes with anthraquinone diazonium cations. Electrochemistry Communications, 2009, 11, 405-408.	4.7	35
164	Electroreduction of oxygen on carbon-supported gold catalysts. Electrochimica Acta, 2009, 54, 7483-7489.	5.2	41
165	Electroreduction of oxygen on glassy carbon electrodes modified with in situ generated anthraquinone diazonium cations. Electrochimica Acta, 2009, 54, 1961-1969.	5.2	69
166	The pH-dependence of oxygen reduction on multi-walled carbon nanotube modified glassy carbon electrodes. Carbon, 2009, 47, 651-658.	10.3	111
167	Electrochemical reduction of oxygen on nanoparticulate gold electrodeposited on a molecular template. Physical Chemistry Chemical Physics, 2009, 11, 3463.	2.8	37
168	Electroreduction of oxygen on gold-supported thin Pt films in acid solutions. Journal of Electroanalytical Chemistry, 2008, 624, 144-150.	3.8	24
169	Spontaneous modification of glassy carbon surface with anthraquinone from the solutions of its diazonium derivative: An oxygen reduction study. Journal of Electroanalytical Chemistry, 2008, 624, 151-160.	3.8	69
170	Electroreduction of oxygen on gold nanoparticle/PDDA-MWCNT nanocomposites in acid solution. Analytica Chimica Acta, 2008, 618, 140-146.	5.4	61
171	Electrochemical reduction of oxygen on nanostructured gold electrodes. Journal of Electroanalytical Chemistry, 2008, 612, 78-86.	3.8	75
172	Electrochemical reduction of oxygen on thin-film Pt electrodes in acid solutions. Electrochimica Acta, 2008, 53, 5873-5880.	5.2	74
173	Electrochemical Reduction of Oxygen on Multiwalled Carbon Nanotube Modified Glassy Carbon Electrodes in Acid Media. Electrochemical and Solid-State Letters, 2007, 10, F18.	2.2	73
174	Electrochemical behaviour of nickel electrodes modified with nitrophenyl groups. Electrochemistry Communications, 2007, 9, 2412-2417.	4.7	18
175	Electrochemical synthesis of hydrogen peroxide: Rotating disk electrode and fuel cell studies. Electrochimica Acta, 2007, 52, 7262-7269.	5.2	75
176	Oxygen electroreduction on anthraquinone-modified nickel electrodes in alkaline solution. Electrochemistry Communications, 2007, 9, 1196-1201.	4.7	33
177	Oxygen electroreduction on chemically modified glassy carbon electrodes in alkaline solution. Journal of Electroanalytical Chemistry, 2007, 599, 183-193.	3.8	46
178	Attachment of anthraquinone derivatives to glassy carbon and the electrocatalytic behavior of the modified electrodes toward oxygen reduction. Journal of Solid State Electrochemistry, 2007, 11, 1411-1420.	2.5	35
179	The pH-dependence of oxygen reduction on quinone-modified glassy carbon electrodes. Electrochimica Acta, 2007, 53, 390-399.	5.2	114
180	Oxygen reduction on gold nanoparticle/multi-walled carbon nanotubes modified glassy carbon electrodes in acid solution. Electrochemistry Communications, 2006, 8, 1475-1480.	4.7	77

#	Article	IF	CITATIONS
181	Electroreduction of oxygen on multi-walled carbon nanotubes modified highly oriented pyrolytic graphite electrodes in alkaline solution. Journal of Electroanalytical Chemistry, 2006, 597, 119-126.	3.8	94
182	Electrocatalytic oxygen reduction on glassy carbon grafted with anthraquinone by anodic oxidation of a carboxylate substituent. Electrochimica Acta, 2005, 50, 5126-5131.	5.2	85
183	Investigation of the oxidation ability of protected hydrazine derivatives. Journal of Chemical Research, 2005, 2005, 661-662.	1.3	11
184	Kinetics of Oxygen Reduction on Quinone-Modified HOPG and BDD Electrodes in Alkaline Solution. Electrochemical and Solid-State Letters, 2005, 8, E30.	2.2	72
185	Electrochemical reduction of oxygen on anodically pre-treated and chemically grafted glassy carbon electrodes in alkaline solutions. Electrochemistry Communications, 2004, 6, 1-5.	4.7	96
186	Oxygen reduction on phenanthrenequinone-modified glassy carbon electrodes in 0.1 M KOH. Journal of Electroanalytical Chemistry, 2004, 564, 159-166.	3.8	129
187	Substituent effects on the electrocatalytic reduction of oxygen on quinone-modified glassy carbon electrodes. Physical Chemistry Chemical Physics, 2004, 6, 1321.	2.8	75
188	Electrochemical reduction of oxygen on anthraquinone-modified glassy carbon electrodes in alkaline solution. Journal of Electroanalytical Chemistry, 2003, 541, 23-29.	3.8	216
189	Electrochemical reduction of oxygen on thin-film Au electrodes in acid solution. Electrochemistry Communications, 2001, 3, 446-450.	4.7	77
190	Surface redox catalysis for O2 reduction on quinone-modified glassy carbon electrodes. Journal of Electroanalytical Chemistry, 2001, 515, 101-112.	3.8	341
191	Thermal preparation of thin platinum coatings and their electrochemical and atomic force microscopic characterization. Applied Surface Science, 2000, 156, 135-142.	6.1	8
192	A new method to analyze polarization curves — its application for the determination of kinetic parameters for oxygen reduction. Electrochemistry Communications, 1999, 1, 415-418.	4.7	0
193	The Reduction of Oxygen on Pt â€â€‰TiO2 Coated Ti Electrodes in Alkaline Solution. Journal of the Electrochemical Society, 1999, 146, 669-676.	2.9	51
194	Preparation and characterization of platinum coatings for long life-time BOD biosensor. Sensors and Actuators B: Chemical, 1998, 47, 21-29.	7.8	10
195	Superoxide electrode based on covalently immobilized cytochrome c: modelling studies. Free Radical Biology and Medicine, 1998, 25, 973-978.	2.9	92
196	DETERMINATION OF BOD IN PHENOLIC WASTEWATERS AND A STUDY OF BIODEGRADATION OF PHENOLIC COMPOUNDS. Critical Reviews in Analytical Chemistry, 1998, 28, 70-74.	3.5	0
197	Electrochemical reduction of oxygen on thin-film Pt electrodes in 0.1 M KOH. Electrochimica Acta, 1997, 42, 893-897.	5.2	82
198	Oxygen electroreduction on titanium-supported thin Pt films in alkaline solution. Electrochimica Acta, 1997, 42, 2961-2967.	5.2	76