Peter Anderson Dargaville

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4379211/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Automated control of oxygen titration in preterm infants on non-invasive respiratory support. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2022, 107, 39-44.	2.8	16
2	Comparison of two devices for automated oxygen control in preterm infants: a randomised crossover trial. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2022, 107, 20-25.	2.8	10
3	Preliminary study of automated oxygen titration at birth for preterm infants. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2022, 107, 539-544.	2.8	5
4	The association between regional transcriptome profiles and lung volumes in response to mechanical ventilation and lung injury. Respiratory Research, 2022, 23, 35.	3.6	3
5	The Paediatric AirWay Suction (PAWS) appropriateness guide for endotracheal suction interventions. Australian Critical Care, 2022, 35, 651-660.	1.3	5
6	Minimally Invasive Surfactant Therapy vs Sham Treatment and Death or Bronchopulmonary Dysplasia in Preterm Infants With Respiratory Distress Syndrome—Reply. JAMA - Journal of the American Medical Association, 2022, 327, 1614.	7.4	3
7	Mask versus nasal prong leak and intermittent hypoxia during continuous positive airway pressure in very preterm infants. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2021, 106, 81-83.	2.8	6
8	Automated oxygen control in preterm infants, how does it work and what to expect: a narrative review. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2021, 106, 215-221.	2.8	24
9	Limitations of thoracic impedance monitoring for central apnoea detection in preterm infants. Acta Paediatrica, International Journal of Paediatrics, 2021, 110, 2550-2552.	1.5	4
10	Unravelling the epidemiology and clinical impact of SARSâ€CoVâ€2 infection in neonates. Acta Paediatrica, International Journal of Paediatrics, 2021, 110, 2482-2483.	1.5	1
11	Surfactant therapy via thin catheter in preterm infants with or at risk of respiratory distress syndrome. The Cochrane Library, 2021, 2021, CD011672.	2.8	57
12	Time to Lung Volume Stability After Pressure Change During High-Frequency Oscillatory Ventilation. , 2021, 3, e0432.		5
13	Automation of oxygen titration in preterm infants: Current evidence and future challenges. Early Human Development, 2021, 162, 105462.	1.8	10
14	Alternative Methods of Surfactant Administration in Preterm Infants with Respiratory Distress Syndrome: State of the Art. , 2021, 56, 553-562.		4
15	Sensory stimulation for apnoea mitigation in preterm infants. Pediatric Research, 2021, , .	2.3	1
16	Effect of Treatment of Clinical Seizures vs Electrographic Seizures in Full-Term and Near-Term Neonates. JAMA Network Open, 2021, 4, e2139604.	5.9	25
17	Effect of Minimally Invasive Surfactant Therapy vs Sham Treatment on Death or Bronchopulmonary Dysplasia in Preterm Infants With Respiratory Distress Syndrome. JAMA - Journal of the American Medical Association, 2021, 326, 2478.	7.4	78
18	Respiratory mechanics during initial lung aeration at birth in the preterm lamb. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L525-L532.	2.9	10

#	Article	IF	CITATIONS
19	Predicting Apnoeic Events in Preterm Infants. Frontiers in Pediatrics, 2020, 8, 570.	1.9	12
20	The proteomic response is linked to regional lung volumes in ventilator-induced lung injury. Journal of Applied Physiology, 2020, 129, 837-845.	2.5	6
21	Oxygenation and intermittent hypoxia in supine vs prone position in very preterm infants. Acta Paediatrica, International Journal of Paediatrics, 2020, 109, 1677-1678.	1.5	5
22	What can exogenous surfactant provide in the fight against BPD?. , 2020, , 93-110.		0
23	Interaction between regional lung volumes and ventilator-induced lung injury in the normal and endotoxemic lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L494-L499.	2.9	9
24	Physiological instability after respiratory pauses in preterm infants. Pediatric Pulmonology, 2019, 54, 1712-1721.	2.0	15
25	Surfactant Administration via Thin Catheter: A Practical Guide. Neonatology, 2019, 116, 211-226.	2.0	53
26	Regional pulmonary effects of bronchoalveolar lavage procedure determined by electrical impedance tomography. Intensive Care Medicine Experimental, 2019, 7, 11.	1.9	8
27	Preterm Lung Exhibits Distinct Spatiotemporal Proteome Expression at Initiation of Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 631-642.	2.9	19
28	Gestational Age Influences the Early Microarchitectural Changes in Response to Mechanical Ventilation in the Preterm Lamb Lung. Frontiers in Pediatrics, 2019, 7, 325.	1.9	8
29	Aeration strategy at birth influences the physiological response to surfactant in preterm lambs. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2019, 104, F587-F593.	2.8	21
30	Psychological distress and self-rated health status in reproductive aged women with pain: findings from a national, cross-sectional survey. BMC Women's Health, 2019, 19, 62.	2.0	2
31	Association of Center-Specific Patient Volumes and Early Respiratory Management Practices with Death and Bronchopulmonary Dysplasia in Preterm Infants. Journal of Pediatrics, 2019, 210, 63-68.e2.	1.8	4
32	Automated oxygen control in the preterm infant: automation yes, but we need intelligence. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2019, 104, fetalneonatal-2018-316371.	2.8	4
33	Gradual Aeration at Birth Is More Lung Protective Than a Sustained Inflation in Preterm Lambs. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 608-616.	5.6	53
34	The Link between Regional Tidal Stretch and Lung Injury during Mechanical Ventilation. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 569-577.	2.9	24
35	Newer Strategies for Surfactant Delivery. , 2019, , 221-238.		2
36	Impact of Minimally Invasive Surfactant Therapy in Preterm Infants at 29-32 Weeks Gestation. Neonatology, 2018, 113, 7-14.	2.0	41

#	Article	IF	CITATIONS
37	Plasma proteomics reveals gestational age-specific responses to mechanical ventilation and identifies the mechanistic pathways that initiate preterm lung injury. Scientific Reports, 2018, 8, 12616.	3.3	13
38	Hypoxic events and concomitant factors in preterm infants on non-invasive ventilation. Journal of Clinical Monitoring and Computing, 2017, 31, 427-433.	1.6	4
39	Administering surfactant without intubation – what does the laryngeal mask offer us?. Jornal De Pediatria, 2017, 93, 313-316.	2.0	4
40	Development and preclinical testing of an adaptive algorithm for automated control of inspired oxygen in the preterm infant. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2017, 102, F31-F36.	2.8	34
41	Time to lung aeration during a sustained inflation at birth is influenced by gestation in lambs. Pediatric Research, 2017, 82, 712-720.	2.3	27
42	Clinical evaluation of a novel adaptive algorithm for automated control of oxygen therapy in preterm infants on non-invasive respiratory support. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2017, 102, F37-F43.	2.8	47
43	Administering surfactant without intubation – what does the laryngeal mask offer us?. Jornal De Pediatria (Versão Em Português), 2017, 93, 313-316.	0.2	0
44	Automatic Torso Detection in Images of Preterm Infants. Journal of Medical Systems, 2017, 41, 134.	3.6	2
45	Inflammation in meconium aspiration syndrome—One of many heads of the hydra. Pediatric Pulmonology, 2016, 51, 555-556.	2.0	0
46	Incidence and Outcome of CPAP Failure in Preterm Infants. Pediatrics, 2016, 138, .	2.1	167
47	Neonatal Outcomes of Very Low Birth Weight and Very Preterm Neonates: An International Comparison. Journal of Pediatrics, 2016, 177, 144-152.e6.	1.8	184
48	Automated control of inspired oxygen for preterm infants: What we have and what we need. Biomedical Signal Processing and Control, 2016, 28, 9-18.	5.7	19
49	Characterisation of the Oxygenation Response to Inspired Oxygen Adjustments in Preterm Infants. Neonatology, 2016, 109, 37-43.	2.0	13
50	Outcomes of Two Trials of Oxygen-Saturation Targets in Preterm Infants. New England Journal of Medicine, 2016, 374, 749-760.	27.0	161
51	Surfactant therapy via brief tracheal catheterization in preterm infants with or at risk of respiratory distress syndrome. The Cochrane Library, 2015, , .	2.8	2
52	An authentic animal model of the very preterm infant on nasal continuous positive airway pressure. Intensive Care Medicine Experimental, 2015, 3, 51.	1.9	15
53	CPAP, Surfactant, or Both for the Preterm Infant. JAMA Pediatrics, 2015, 169, 715.	6.2	12

54 Elements of vision based respiratory monitoring. , 2015, , .

2

#	Article	IF	CITATIONS
55	Respiratory Mechanics in the Mechanically Ventilated Patient. , 2015, , 293-371.		3
56	Are All Oscillators Created Equal? In vitro Performance Characteristics of Eight High-Frequency Oscillatory Ventilators. Neonatology, 2015, 108, 220-228.	2.0	23
57	Lost without trace: oximetry signal dropout in preterm infants. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2015, 100, F436-F438.	2.8	5
58	Acute Neonatal Respiratory Failure. , 2015, , 1185-1265.		1
59	Monitoring Lung Volumes During Mechanical Ventilation. , 2015, , 441-471.		0
60	Optimal mean airway pressure during high-frequency oscillatory ventilation determined by measurement of respiratory system reactance. Pediatric Research, 2014, 75, 493-499.	2.3	33
61	Non-contact respiratory monitoring in neonates. , 2014, , .		5
62	Minimally Invasive Surfactant Therapy: An Update. NeoReviews, 2014, 15, e275-e285.	0.8	22
63	Surfactant for meconium aspiration syndrome in term and late preterm infants. The Cochrane Library, 2014, , CD002054.	2.8	47
64	Oxygen Saturation Targeting in Preterm Infants Receiving Continuous Positive Airway Pressure. Journal of Pediatrics, 2014, 164, 730-736.e1.	1.8	95
65	The OPTIMIST-A trial: evaluation of minimally-invasive surfactant therapy in preterm infants 25–28 weeks gestation. BMC Pediatrics, 2014, 14, 213.	1.7	71
66	Administration of surfactant using less invasive techniques as a part of a non-aggressive paradigm towards preterm infants. Early Human Development, 2014, 90, S57-S59.	1.8	16
67	Pressure and Flow Waveform Characteristics of Eight High-Frequency Oscillators. Pediatric Critical Care Medicine, 2014, 15, e234-e240.	0.5	11
68	Lung lavage for meconium aspiration syndrome in newborn infants. The Cochrane Library, 2013, , CD003486.	2.8	21
69	Fluid recovery during lung lavage in meconium aspiration syndrome. Acta Paediatrica, International Journal of Paediatrics, 2013, 102, e90-3.	1.5	9
70	Minimally-invasive surfactant therapy in preterm infants on continuous positive airway pressure. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2013, 98, F122-F126.	2.8	175
71	Binary search for time-constant estimation in first order systems, FiO <inf>2</inf> - SpO <inf>2</inf> case study. , 2013, , .		1
72	Continuous Positive Airway Pressure Failure in Preterm Infants: Incidence, Predictors and Consequences. Neonatology, 2013, 104, 8-14.	2.0	151

#	Article	IF	CITATIONS
73	High-Frequency Oscillatory Ventilation with Low Oscillatory Frequency in Pulmonary Interstitial Emphysema. Neonatology, 2013, 104, 243-249.	2.0	26
74	Indicators of Optimal Lung Volume During High-Frequency Oscillatory Ventilation in Infants*. Critical Care Medicine, 2013, 41, 237-244.	0.9	51
75	Respiratory Support in Meconium Aspiration Syndrome: A Practical Guide. International Journal of Pediatrics (United Kingdom), 2012, 2012, 1-9.	0.8	41
76	Engaging with the Medical community in Biomedical Engineering research. , 2012, , .		1
77	Lung protective ventilation in extremely preterm infants. Journal of Paediatrics and Child Health, 2012, 48, 740-746.	0.8	61
78	Modelling damaged lung pressure-volume behaviour. , 2012, , .		0
79	Innovation in Surfactant Therapy I: Surfactant Lavage and Surfactant Administration by Fluid Bolus Using Minimally Invasive Techniques. Neonatology, 2012, 101, 326-336.	2.0	45
80	Preliminary evaluation of a new technique of minimally invasive surfactant therapy. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2011, 96, F243-F248.	2.8	174
81	Randomized Controlled Trial of Lung Lavage with Dilute Surfactant for Meconium Aspiration Syndrome. Journal of Pediatrics, 2011, 158, 383-389.e2.	1.8	72
82	Volume Not Guaranteed: Closed Endotracheal Suction Compromises Ventilation in Volume-Targeted Mode. Neonatology, 2011, 99, 78-82.	2.0	6
83	The effect of endotracheal suction on regional tidal ventilation and end-expiratory lung volume. Intensive Care Medicine, 2010, 36, 888-896.	8.2	48
84	Regional tidal ventilation and compliance during a stepwise vital capacity manoeuvre. Intensive Care Medicine, 2010, 36, 1953-1961.	8.2	91
85	Lung Volume Measurement in the Neonate—Throwing Light on the Subject: Commentary on the article by Dellaca' et al. on page 11. Pediatric Research, 2010, 67, 9-10.	2.3	6
86	The Effects of Closed Endotracheal Suction on Ventilation During Conventional and High-Frequency Oscillatory Ventilation. Pediatric Research, 2009, 66, 400-404.	2.3	14
87	The Effect of Suction Method, Catheter Size, and Suction Pressure on Lung Volume Changes During Endotracheal Suction in Piglets. Pediatric Research, 2009, 66, 405-410.	2.3	19
88	Comparison of four methods of lung volume recruitment during high frequency oscillatory ventilation. Intensive Care Medicine, 2009, 35, 1990-8.	8.2	48
89	Refining the Method of Therapeutic Lung Lavage in Meconium Aspiration Syndrome. Neonatology, 2008, 94, 160-163.	2.0	20
90	Blood Gases and Pulmonary Blood Flow During Resuscitation of Very Preterm Lambs Treated With Antenatal Betamethasone and/or Curosurf: Effect of Positive End-Expiratory Pressure. Pediatric Research, 2007, 62, 37-42.	2.3	31

#	Article	IF	CITATIONS
91	Surfactant for meconium aspiration syndrome in full term/near term infants. , 2007, , CD002054.		74
92	Trends in use and outcome of newborn infants treated with high frequency ventilation in Australia and New Zealand, 1996?2003. Journal of Paediatrics and Child Health, 2007, 43, 160-166.	0.8	24
93	Massive hepatic congenital haemangioma: Clinical dilemmas. Journal of Paediatrics and Child Health, 2007, 43, 312-314.	0.8	4
94	Therapeutic lung lavage in meconium aspiration syndrome: A preliminary report. Journal of Paediatrics and Child Health, 2007, 43, 539-545.	0.8	32
95	Effects of open endotracheal suction on lung volume in infants receiving HFOV. Intensive Care Medicine, 2007, 33, 689-693.	8.2	37
96	A comparison of the effectiveness of open and closed endotracheal suction. Intensive Care Medicine, 2007, 33, 1655-1662.	8.2	38
97	Skin conductance as a measure of pain and stress in hospitalised infants. Early Human Development, 2006, 82, 603-608.	1.8	86
98	The Deflation Limb of the Pressure–Volume Relationship in Infants during High-Frequency Ventilation. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 414-420.	5.6	92
99	The Epidemiology of Meconium Aspiration Syndrome: Incidence, Risk Factors, Therapies, and Outcome. Pediatrics, 2006, 117, 1712-1721.	2.1	238
100	Lung Volume Recruitment after Surfactant Administration Modifies Spatial Distribution of Ventilation. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 772-779.	5.6	168
101	Positive end-expiratory pressure differentially alters pulmonary hemodynamics and oxygenation in ventilated, very premature lambs. Journal of Applied Physiology, 2005, 99, 1453-1461.	2.5	92
102	Effects of tidal volume and positive end-expiratory pressure during resuscitation of very premature lambs. Acta Paediatrica, International Journal of Paediatrics, 2005, 94, 1764-1770.	1.5	28
103	Magnetic Resonance Imaging in Neonatal Nonketotic Hyperglycinemia. Pediatric Neurology, 2005, 33, 50-52.	2.1	28
104	Surfactant Therapy for Meconium Aspiration Syndrome. Drugs, 2005, 65, 2569-2591.	10.9	49
105	Effects of tidal volume and positive endâ€expiratory pressure during resuscitation of very premature lambs. Acta Paediatrica, International Journal of Paediatrics, 2005, 94, 1764-1770.	1.5	24
106	Positive End Expiratory Pressure during Resuscitation of Premature Lambs Rapidly Improves Blood Gases without Adversely Affecting Arterial Pressure. Pediatric Research, 2004, 56, 198-204.	2.3	117
107	Neonatal coxsackie B virus infection?a treatable disease?. European Journal of Pediatrics, 2004, 163, 223-228.	2.7	72
108	Internal mandibular distraction to relieve airway obstruction in infants and young children with micrognathia. Pediatric Pulmonology, 2004, 37, 230-235.	2.0	31

#	Article	IF	CITATIONS
109	Aspiration of bile as a cause of respiratory distress in the newborn infant. Journal of Pediatrics, 2004, 144, 389-390.	1.8	9
110	Electrical impedance tomography: a method for monitoring regional lung aeration and tidal volume distribution?. Intensive Care Medicine, 2003, 29, 2312-2316.	8.2	166
111	Blood aspiration syndrome as a cause of respiratory distress in the newborn infant. Journal of Pediatrics, 2003, 142, 200-202.	1.8	17
112	Embolization of cannula fragments during insertion of central catheters. Journal of Pediatrics, 2003, 143, 690-691.	1.8	3
113	Therapeutic Lung Lavage in the Piglet Model of Meconium Aspiration Syndrome. American Journal of Respiratory and Critical Care Medicine, 2003, 168, 456-463.	5.6	61
114	Left-lung-collapse bronchial deformation in giant omphalocele. Journal of Pediatric Surgery, 2001, 36, 846-850.	1.6	21
115	Upper cervical spinal cord injury in neonates: The use of magnetic resonance imaging. Journal of Pediatrics, 2001, 138, 105-108.	1.8	37
116	Surfactant and surfactant inhibitors in meconium aspiration syndrome. Journal of Pediatrics, 2001, 138, 113-115.	1.8	92
117	Pulmonary surfactant and cardiopulmonary bypass in infants. Journal of Thoracic and Cardiovascular Surgery, 2000, 119, 192.	0.8	0
118	A new sensor for monitoring chest wall motion during high-frequency oscillatory ventilation. Medical Engineering and Physics, 1999, 21, 619-623.	1.7	34
119	Automated oxygen delivery for preterm infants with respiratory dysfunction. The Cochrane Library, 0,	2.8	1
120	EBNEO commentary: Outcomes following preterm birth: What we think and what is real. Acta Paediatrica, International Journal of Paediatrics, 0, , .	1.5	0