Inderjit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4379048/publications.pdf

Version: 2024-02-01

85541 94433 6,366 76 37 71 citations h-index g-index papers 79 79 79 5705 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Vegetation patterning and biodiversity of plant communities. Physics of Life Reviews, 2022, 42, 29-32.	2.8	O
2	Belowground feedbacks as drivers of spatial self-organization and community assembly. Physics of Life Reviews, 2021, 38, 1-24.	2.8	23
3	Novel chemicals engender myriad invasion mechanisms. New Phytologist, 2021, 232, 1184-1200.	7.3	18
4	Exotic Prosopis juliflora suppresses understory diversity and promotes agricultural weeds more than a native congener. Plant Ecology, 2020, 221, 659-669.	1.6	13
5	Drivers of the relative richness of naturalized and invasive plant species on Earth. AoB PLANTS, 2019, 11, plz051.	2.3	72
6	The world needs BRICS countries to build capacity in invasion science. PLoS Biology, 2019, 17, e3000404.	5.6	9
7	Naturalized alien flora of the Indian states: biogeographic patterns, taxonomic structure and drivers of species richness. Biological Invasions, 2018, 20, 1625-1638.	2.4	42
8	Inhibitory effects of <i>Eucalyptus globulus</i> on understorey plant growth and species richness are greater in nonâ€native regions. Global Ecology and Biogeography, 2018, 27, 68-76.	5.8	52
9	Insights on the persistence of pines (<i>Pinus</i> species) in the Late Cretaceous and their increasing dominance in the Anthropocene. Ecology and Evolution, 2018, 8, 10345-10359.	1.9	13
10	Interference potential of Sorghum halepense on soil and plant seedling growth. Plant and Soil, 2017, 418, 219-230.	3.7	3
11	Arbuscular mycorrhizal fungi facilitate growth and competitive ability of an exotic species Flaveria bidentis. Soil Biology and Biochemistry, 2017, 115, 275-284.	8.8	37
12	A framework for understanding humanâ€driven vegetation change. Oikos, 2017, 126, 1687-1698.	2.7	12
13	Naturalized alien flora of the world. Preslia, 2017, 89, 203-274.	2.8	350
14	Community-level determinants of smooth brome (Bromus inermis) growth and survival in the aspen parkland. Plant Ecology, 2016, 217, 1395-1413.	1.6	11
15	Linkages of plant-soil feedbacks and underlying invasion mechanisms. AoB PLANTS, 2015, 7, plv022-plv022.	2.3	40
16	Introduction to the Special Issue: The role of soil microbial-driven belowground processes in mediating exotic plant invasions. AoB PLANTS, 2015, 7, plv052.	2.3	0
17	Reply to ProenÃSa et al.: Sown biodiverse pastures are not a universal solution to invasion risk. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1696.	7.1	1
18	Global exchange and accumulation of non-native plants. Nature, 2015, 525, 100-103.	27.8	746

#	Article	IF	CITATIONS
19	New pasture plants intensify invasive species risk. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16622-16627.	7.1	85
20	Soils and the conditional allelopathic effects of a tropical invader. Soil Biology and Biochemistry, 2014, 78, 316-325.	8.8	21
21	Impact of nitrogen availability and soil communities on biomass accumulation of an invasive species. AoB PLANTS, 2013, 5, plt045-plt045.	2.3	13
22	Exotic Plant Invasion in the Context of Plant Defense against Herbivores Â. Plant Physiology, 2012, 158, 1107-1114.	4.8	17
23	Community Impacts of Prosopis juliflora Invasion: Biogeographic and Congeneric Comparisons. PLoS ONE, 2012, 7, e44966.	2.5	99
24	Effects of invasion of Mikania micrantha on germination of rice seedlings, plant richness, chemical properties and respiration of soil. Biology and Fertility of Soils, 2012, 48, 481-488.	4.3	36
25	Volatile chemicals from leaf litter are associated with invasiveness of a Neotropical weed in Asia. Ecology, 2011, 92, 316-324.	3.2	109
26	The ecosystem and evolutionary contexts of allelopathy. Trends in Ecology and Evolution, 2011, 26, 655-662.	8.7	313
27	Emergent insights from the synthesis of conceptual frameworks for biological invasions. Ecology Letters, 2011, 14, 407-418.	6.4	269
28	A quicker return energy-use strategy by populations of a subtropical invader in the non-native range: a potential mechanism for the evolution of increased competitive ability. Journal of Ecology, 2011, 99, 1116-1123.	4.0	66
29	Effect of herbicides with different modes of action on physiological and cellular traits of Anabaena fertilissima. Paddy and Water Environment, 2010, 8, 277-282.	1.8	21
30	Impacts of soil microbial communities on exotic plant invasions. Trends in Ecology and Evolution, 2010, 25, 512-519.	8.7	315
31	Interaction of 8-Hydroxyquinoline with Soil Environment Mediates Its Ecological Function. PLoS ONE, 2010, 5, e12852.	2.5	24
32	Taking Ecological Function Seriously: Soil Microbial Communities Can Obviate Allelopathic Effects of Released Metabolites. PLoS ONE, 2009, 4, e4700.	2.5	137
33	Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1853-1856.	7.1	275
34	Impact of (\hat{A}_{\pm}) -catechin on soil microbial communities. Communicative and Integrative Biology, 2009, 2, 127-129.	1.4	19
35	Use of silenced plants in allelopathy bioassays: a novel approach. Planta, 2009, 229, 569-575.	3.2	22
36	Allelopathy and plant invasions: traditional, congeneric, and bio-geographical approaches. Biological Invasions, 2008, 10, 875-890.	2.4	125

#	Article	IF	CITATIONS
37	Phytotoxic Effects of (±)-Catechin In vitro, in Soil, and in the Field. PLoS ONE, 2008, 3, e2536.	2.5	7 5
38	Oryza sativa straw restricts Phalaris minor growth: allelochemicals or soil resource manipulation?. Biology and Fertility of Soils, 2007, 43, 557-563.	4.3	7
39	Can plant biochemistry contribute to understanding of invasion ecology?. Trends in Plant Science, 2006, 11, 574-580.	8.8	103
40	Activities of mixtures of soil-applied herbicides with different molecular targets. Pest Management Science, 2006, 62, 1092-1097.	3.4	16
41	Experimental complexities in evaluating the allelopathic activities in laboratory bioassays: A case study. Soil Biology and Biochemistry, 2006, 38, 256-262.	8.8	46
42	Soil Microorganisms: An Important Determinant of Allelopathic Activity. Plant and Soil, 2005, 274, 227-236.	3.7	188
43	Effect of Rice Straw Incorporation on Phytotoxicity of Isoxaflutole to an Exotic Weed Phalaris minor Retz Plant and Soil, 2005, 277, 35-40.	3.7	6
44	Plant Invasions: Habitat Invasibility and Dominance of Invasive Plant Species. Plant and Soil, 2005, 277, 1-5.	3.7	27
45	The ecology of biological invasions: past, present and future. , 2005, , 19-43.		33
46	Challenges, achievements and opportunities in allelopathy research. Journal of Plant Interactions, 2005, 1, 69-81.	2.1	61
47	Phytotoxicity of isoxaflutole to Phalaris minor Retz Plant and Soil, 2004, 258, 161-168.	3.7	9
48	Sorption of benzoic acid onto soil colloids and its implications for allelopathy studies. Biology and Fertility of Soils, 2004, 40, 345-348.	4.3	50
49	Phytotoxicity and fate of $1,1,2$ -trichloroethylene: a laboratory study. Journal of Chemical Ecology, 2003, 29, 1329-1335.	1.8	4
50	Experimental designs for the study of allelopathy. Plant and Soil, 2003, 256, 1-11.	3.7	206
51	Ecophysiological aspects of allelopathy. Planta, 2003, 217, 529-539.	3.2	440
52	Bioassays and Field Studies for Allelopathy in Terrestrial Plants: Progress and Problems. Critical Reviews in Plant Sciences, 2003, 22, 221-238.	5.7	119
53	Root Exudates: an Overview. Ecological Studies, 2003, , 235-255.	1.2	53
54	Joint action of phenolic acid mixtures and its significance in allelopathy research. Physiologia Plantarum, 2002, 114, 422-428.	5.2	80

#	Article	IF	CITATIONS
55	Plant allelochemical interference or soil chemical ecology?. Perspectives in Plant Ecology, Evolution and Systematics, 2001, 4, 3-12.	2.7	140
56	Are Laboratory Bioassays for Allelopathy Suitable for Prediction of Field Responses?., 2000, 26, 2111-2118.		108
57	Influence of Pluchea lanceolata (Asteraceae) on selected soil properties. American Journal of Botany, 1998, 85, 64-69.	1.7	24
58	Effect of phenolic compounds on selected soil properties. Forest Ecology and Management, 1997, 92, 11-18.	3.2	66
59	Principles in Weed Management.—R. J. Aldrich and R. J. Kremer, 1997, 2nd ed, Iowa State University Press, Ames, Iowa 50014, 455 p. ISBN 0-8138-2023-5 (hardcover) \$64.95 Weed Technology, 1997, 11, 864-865.	0.9	0
60	Effects of Ledum groenlandicum amendments on soil characteristics and black spruce seedling growth. Plant Ecology, 1997, 133, 29-36.	1.6	53
61	Is separating resource competition from allelopathy realistic?. Botanical Review, The, 1997, 63, 221-230.	3.9	159
62	Plant phenolics in allelopathy. Botanical Review, The, 1996, 62, 186-202.	3.9	343
63	Allelopathic potential of well water fromPluchea lanceolata-infested cultivated fields. Journal of Chemical Ecology, 1996, 22, 1123-1131.	1.8	9
64	Growth and physiological responses of Black Spruce (Picea mariana) to sites dominated byLedum groenlandicum. Journal of Chemical Ecology, 1996, 22, 575-585.	1.8	54
65	On laboratory bioassays in allelopathy. Botanical Review, The, 1995, 61, 28-44.	3.9	150
66	Allelopathic effect of <i>Pluchea lanceolata</i> (Asteraceae) on characteristics of four soils and tomato and mustard growth. American Journal of Botany, 1994, 81, 799-804.	1.7	52
67	Effect of cultivation on allelopathic interference success of the weed, Pluchea lanceolata. Journal of Chemical Ecology, 1994, 20, 1179-1188.	1.8	15
68	Allelopathic potential of the phenolics from the roots of Pluchea lanceolata. Physiologia Plantarum, 1994, 92, 571-576.	5.2	33
69	Quercetin and Quercitrin from <i>Pluchea lanceolata</i> and Their Effect on Growth of Asparagus Bean. ACS Symposium Series, 1994, , 86-93.	0.5	3
70	Allelopathic Effect of Pluchea lanceolata (Asteraceae) on Characteristics of Four Soils and Tomato and Mustard Growth. American Journal of Botany, 1994, 81, 799.	1.7	40
71	INTERFERENCE POTENTIAL OF PLUCHEA LANCEOLATA (ASTERACEAE): GROWTH AND PHYSIOLOGICAL RESPONSES OF ASPARAGUS BEAN, VIGNA UNGUICULATA VAR. SESQUIPEDALIS. American Journal of Botany, 1992, 79, 977-981.	1.7	21
72	Formononetin 7-O-glucoside (ononin), an additional growth inhibitor in soils associated with the weed, Pluchea lanceolata (DC) C.B. Clarke (Asteraceae). Journal of Chemical Ecology, 1992, 18, 713-718.	1.8	44

Inderjit

#	Article	IF	CITATION
73	Interference Potential of Pluchea lanceolata (Asteraceae): Growth and Physiological Responses of Asparagus Bean, Vigna Unguiculata Var. Sesquipedalis. American Journal of Botany, 1992, 79, 977.	1.7	13
74	Hesperetin 7-rutinoside (hesperidin) and taxifolin 3-arabinoside as germination and growth inhibitors in soils associated with the weed,Pluchea lanceolata (DC) C.B. Clarke (Asteraceae). Journal of Chemical Ecology, 1991, 17, 1585-1591.	1.8	39
75	Investigations on some aspects of chemical ecology of cogongrass, Imperata cylindrica (L.) Beauv Journal of Chemical Ecology, 1991, 17, 343-352.	1.8	43
76	The nature of the interference potential of Pluchea lanceolata (DC) C B Clarke (Asteraceae). Plant and Soil, 1990, 122, 298-302.	3.7	24