
Agnieszka Kierys

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4378497/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal degradation of CTAB in as-synthesized MCM-41. Journal of Thermal Analysis and Calorimetry, 2009, 96, 375-382.	3.6	68
2	Nickel catalysts supported on silica microspheres for CO2 methanation. Microporous and Mesoporous Materials, 2018, 272, 79-91.	4.4	55
3	²⁹ Si NMR and Raman Glimpses into the Molecular Structures of Acid and Base Set Silica Gels Obtained from TEOS and Na-Silicate. Journal of Physical Chemistry C, 2011, 115, 24788-24799.	3.1	45
4	Synthesis and characterization of nanostructural polymer–silica composite: Positron annihilation lifetime spectroscopy study. Journal of Colloid and Interface Science, 2011, 358, 268-276.	9.4	43
5	Polymer/silica composite of core–shell type by polymer swelling in TEOS. Journal of Colloid and Interface Science, 2010, 349, 361-365.	9.4	34
6	Positron annihilation and N2 adsorption for nanopore determination in silica-polymer composites. RSC Advances, 2012, 2, 3729.	3.6	33
7	Polymer–silica composites and silicas produced by high-temperature degradation of organic component. Thermochimica Acta, 2015, 615, 43-50.	2.7	25
8	n-Heptane adsorption and desorption on porous silica observed by positron annihilation lifetime spectroscopy. Microporous and Mesoporous Materials, 2012, 154, 142-147.	4.4	22
9	Synthesis of Aspirin-loaded Polymer–Silica Composites and their Release Characteristics. ACS Applied Materials & Interfaces, 2014, 6, 14369-14376.	8.0	22
10	Polymer–mesoporous silica composites for drug release systems. Microporous and Mesoporous Materials, 2020, 294, 109881.	4.4	22
11	Composition of pore surface investigated by positron annihilation lifetime spectroscopy. Microporous and Mesoporous Materials, 2012, 163, 276-281.	4.4	20
12	Positron Probing of Liquid-free Volume To Investigate Adsorption–Desorption Behavior of Water in Two-Dimensional Mesoporous SBA-3. Journal of Physical Chemistry C, 2017, 121, 17251-17262.	3.1	19
13	Polymer–silica composite as a carrier of an active pharmaceutical ingredient. Microporous and Mesoporous Materials, 2014, 193, 40-46.	4.4	18
14	n-Heptane adsorption in periodic mesoporous silica by in situ positron annihilation lifetime spectroscopy. Microporous and Mesoporous Materials, 2013, 179, 104-110.	4.4	17
15	Insight into the structure of polymer–silica nano-composites prepared by vapor-phase. Journal of Colloid and Interface Science, 2015, 441, 65-70.	9.4	17
16	Positron insight into evolution of pore volume and penetration of the polymer network by n-heptane molecules in mesoporous XAD4. Physical Chemistry Chemical Physics, 2017, 19, 10009-10019.	2.8	17
17	Isothermal template removal from MCM-41 in hydrogen flow. Microporous and Mesoporous Materials, 2007, 98, 242-248.	4.4	14
18	The release of ibuprofen sodium salt from permanently porous poly(hydroxyethyl) Tj ETQq0 0 0 rgBT /Overlock 10	Tf 50 67 4.4	Td (methacr 14

Materials, 2015, 217, 133-140.

Agnieszka Kierys

#	Article	IF	CITATIONS
19	One-pot synthesis of two different highly porous silica materials. Microporous and Mesoporous Materials, 2016, 221, 14-22.	4.4	14
20	TG/DSC/FTIR studies on the oxidative decomposition of polymer-silica composites loaded with sodium ibuprofen. Polymer Degradation and Stability, 2017, 138, 151-160.	5.8	14
21	Free volumes evolution during desorption of n-heptane from silica with regular pore geometry. Positron annihilation study. Applied Surface Science, 2010, 256, 5316-5322.	6.1	13
22	Nanostructured polymer–titanium composites and titanium oxide through polymer swelling in titania precursor. Colloid and Polymer Science, 2013, 291, 1463-1470.	2.1	13
23	Encapsulation of diclofenac sodium within polymer beads by silica species via vapour-phase synthesis. Colloids and Surfaces B: Biointerfaces, 2016, 142, 30-37.	5.0	13
24	Thermal characterization of polymer-silica composites loaded with ibuprofen sodium salt. Journal of Analytical and Applied Pyrolysis, 2015, 114, 91-99.	5.5	12
25	Sorption on as-synthesized MCM-41. Journal of Thermal Analysis and Calorimetry, 2007, 87, 165-169.	3.6	9
26	Positron porosimetry study of mesoporous polymer–silica composites. Adsorption, 2016, 22, 745-754.	3.0	9
27	The porosity and morphology of mesoporous silica agglomerates. Journal of Porous Materials, 2010, 17, 669-676.	2.6	8
28	What can positronium tell us about adsorption?. Adsorption, 2013, 19, 529-535.	3.0	8
29	Polymer-amino-functionalized silica composites for the sustained-release multiparticulate system. Materials Science and Engineering C, 2018, 85, 114-122.	7.3	8
30	Polymer-hybrid silica composite for the azo dye removal from aqueous solution. Journal of Dispersion Science and Technology, 2019, 40, 1396-1404.	2.4	8
31	Mesoporous micelle templated silica with incorporated C8 and C18 phase. Journal of Thermal Analysis and Calorimetry, 2007, 87, 217-222.	3.6	7
32	Organic deposits on MCM-41 surface after thermal treatment of as-synthesized samples. European Physical Journal: Special Topics, 2008, 154, 335-338.	2.6	7
33	Synthesis of the mesostructured polymer-silica composite and silicon dioxide through polymer swelling in silica precursor. Adsorption, 2016, 22, 663-671.	3.0	7
34	Thinning down of polymer matrix by entrapping silica nanoparticles. Colloid and Polymer Science, 2011, 289, 751-758.	2.1	6
35	Effect of silica precursor transformation on diclofenac sodium release. RSC Advances, 2015, 5, 94067-94076.	3.6	5
36	Mixed-valence mesoporous manganese oxide spheres from waste manganese nitrate aqueous solution. Microporous and Mesoporous Materials, 2019, 284, 353-359.	4.4	5

Agnieszka Kierys

#	Article	IF	CITATIONS
37	Influence of different confining matrices on negative pressure in liquid n-heptane investigated using positronium bubbles as a probe. Journal of Colloid and Interface Science, 2020, 558, 259-268.	9.4	5
38	Polymer templated production of highly porous cerium oxide in direct temperature driven transformation of cerium(III) salt. Microporous and Mesoporous Materials, 2021, 318, 111032.	4.4	5
39	Positron lifetime spectroscopy of defect structures in Cd _{1–<i>x</i>} Zn _{<i>x</i>} Te mixed crystals grown by vertical Bridgman–Stockbarger method. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2021, 77, 515-525.	1.1	5
40	On The Molecular Basis Of Silica Gel Morphology. Advanced Materials Letters, 2015, 6, 40-46.	0.6	4
41	Unraveling the Phase Behavior of Water Confined in Nanochannels through Positron Annihilation. Journal of Physical Chemistry C, 2022, 126, 5916-5926.	3.1	4
42	Thermal stability of chemically bonded phases on silica gel by photoacoustic FT-IR spectroscopy. European Physical Journal Special Topics, 2006, 137, 291-295.	0.2	3
43	Temperature dependence of positronium lifetime in cylindrical pores. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 3814-3818.	0.8	3
44	N-heptane adsorption and desorption in mesoporous materials. Journal of Physics: Conference Series, 2015, 618, 012040.	0.4	3
45	Formation of polysilsesquioxane network by vapor-phase method in the spatially limited system of cross-linked polymer pores. Polymer, 2018, 141, 202-212.	3.8	2
46	Vapour-phase method in the synthesis of polymer-ibuprofen sodium-silica gel composites. Saudi Pharmaceutical Journal, 2017, 25, 972-980.	2.7	1
47	Positron Annihilation Lifetime Spectroscopy Application to <i>In Situ</i> Monitoring of <i>n</i> -Heptane Sorption in Mesopores. Defect and Diffusion Forum, 0, 373, 288-294.	0.4	1
48	Positron study of adsorption of n-heptane in SBA-3. Adsorption, 2019, 25, 881-887.	3.0	1
49	Ammonia vapor induced transformation of selected alkoxysilanes within artificial and natural polymer templates. Journal of Non-Crystalline Solids, 2022, 576, 121288.	3.1	1
50	Positron Lifetime Annihilation Study of Porous Composites and Silicas Synthesized Using Polymer Templates. Defect and Diffusion Forum, 0, 373, 280-283.	0.4	0
51	Effect of condensing tetraethoxysilane on desorption of organic compound from porous polymer. Adsorption Science and Technology, 2017, 35, 490-498.	3.2	Ο