List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4378438/publications.pdf Version: 2024-02-01

		4146	13379
311	22,512	87	130
papers	citations	h-index	g-index
			<i>i</i>
317	317	317	9394
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Supramolecular assembly of chloroplast NADH dehydrogenase-like complex with photosystem I from Arabidopsis thaliana. Molecular Plant, 2022, 15, 454-467.	8.3	19
2	The role of light-harvesting complex I in excitation energy transfer from LHCII to photosystem I in Arabidopsis. Plant Physiology, 2022, 188, 2241-2252.	4.8	8
3	Harnessing the Algal Chloroplast for Heterologous Protein Production. Microorganisms, 2022, 10, 743.	3.6	14
4	Loss of a single chlorophyll in CP29 triggers re-organization of the Photosystem II supramolecular assembly. Biochimica Et Biophysica Acta - Bioenergetics, 2022, 1863, 148555.	1.0	2
5	A kaleidoscope of photosynthetic antenna proteins and their emerging roles. Plant Physiology, 2022, 189, 1204-1219.	4.8	14
6	Assessing photoprotective functions of carotenoids in photosynthetic systems of plants and green algae. Methods in Enzymology, 2022, , 53-84.	1.0	8
7	Violaxanthin and Zeaxanthin May Replace Lutein at the L1 Site of LHCII, Conserving the Interactions with Surrounding Chlorophylls and the Capability of Triplet–Triplet Energy Transfer. International Journal of Molecular Sciences, 2022, 23, 4812.	4.1	7
8	Molecular mechanisms of light harvesting in the minor antenna CP29 in near-native membrane lipidic environment. Journal of Chemical Physics, 2022, 156, .	3.0	7
9	A microalgalâ€based preparation with synergistic cellulolytic and detoxifying action towards chemicalâ€treated lignocellulose. Plant Biotechnology Journal, 2021, 19, 124-137.	8.3	10
10	Plants with less chlorophyll: A global change perspective. Global Change Biology, 2021, 27, 959-967.	9.5	17
11	Effect of lhcsr gene dosage on oxidative stress and light use efficiency by Chlamydomonas reinhardtii cultures. Journal of Biotechnology, 2021, 328, 12-22.	3.8	10
12	High Carotenoid Mutants of Chlorella vulgaris Show Enhanced Biomass Yield under High Irradiance. Plants, 2021, 10, 911.	3.5	16
13	Dissipation of Light Energy Absorbed in Excess: The Molecular Mechanisms. Annual Review of Plant Biology, 2021, 72, 47-76.	18.7	90
14	Light-harvesting complex stress-related proteins play crucial roles in the acclimation of Physcomitrella patens under fluctuating light conditions. Photosynthesis Research, 2021, , 1.	2.9	6
15	A chimeric hydrolase-PTXD transgene enables chloroplast-based heterologous protein expression and non-sterile cultivation of Chlamydomonas reinhardtii. Algal Research, 2021, 59, 102429.	4.6	6
16	A new function for the xanthophyll zeaxanthin: glueing chlorophyll biosynthesis to thylakoid protein assembly. Biochemical Journal, 2021, 478, 61-62.	3.7	1
17	Protein–Protein Interactions Induce pH-Dependent and Zeaxanthin-Independent Photoprotection in the Plant Light-Harvesting Complex, LHCII. Journal of the American Chemical Society, 2021, 143, 17577-17586.	13.7	17
18	Optimized Cas9 expression systems for highly efficient Arabidopsis genome editing facilitate isolation of complex alleles in a single generation. Functional and Integrative Genomics, 2020, 20, 151-162.	3.5	43

#	Article	IF	CITATIONS
19	Monomeric light harvesting complexes enhance excitation energy transfer from LHCII to PSII and control their lateral spacing in thylakoids. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148035.	1.0	11
20	Exploring the potential of microalgae in the recycling of dairy wastes. Bioresource Technology Reports, 2020, 12, 100604.	2.7	27
21	Cell Synchronization Enhances Nuclear Transformation and Genome Editing <i>via</i> Cas9 Enabling Homologous Recombination in <i>Chlamydomonas reinhardtii</i> . ACS Synthetic Biology, 2020, 9, 2840-2850.	3.8	22
22	Expression of a Hyperthermophilic Cellobiohydrolase in Transgenic Nicotiana tabacum by Protein Storage Vacuole Targeting. Plants, 2020, 9, 1799.	3.5	1
23	Observation of dissipative chlorophyll-to-carotenoid energy transfer in light-harvesting complex II in membrane nanodiscs. Nature Communications, 2020, 11, 1295.	12.8	74
24	Identification of a pigment cluster catalysing fast photoprotective quenching response in CP29. Nature Plants, 2020, 6, 303-313.	9.3	21
25	Potential and Challenges of Improving Photosynthesis in Algae. Plants, 2020, 9, 67.	3.5	72
26	A Phosphite Dehydrogenase Variant with Promiscuous Access to Nicotinamide Cofactor Pools Sustains Fast Phosphite-Dependent Growth of Transplastomic Chlamydomonas reinhardtii. Plants, 2020, 9, 473.	3.5	13
27	Chlorophyll-Xanthophyll Antenna Complexes: In Between Light Harvesting and Energy Dissipation. Advances in Photosynthesis and Respiration, 2020, , 27-55.	1.0	4
28	Mapping out Photoprotective Dissipation in Green Plants Using Ultrabroadband 2D Electronic Spectroscopy. , 2020, , .		0
29	Carotenoid-Mediated Light Harvesting in Plants Uncovered with Ultrabroadband Two-Dimensional Electronic Spectroscopy. , 2020, , .		0
30	Algae: A New Biomass Resource. , 2019, , 165-197.		2
31	Functional analysis of LHCSR1, a protein catalyzing NPQ in mosses, by heterologous expression in Arabidopsis thaliana. Photosynthesis Research, 2019, 142, 249-264.	2.9	7
32	Combined resistance to oxidative stress and reduced antenna size enhance light-to-biomass conversion efficiency in Chlorella vulgaris cultures. Biotechnology for Biofuels, 2019, 12, 221.	6.2	41
33	The Electronic Structure of Lutein 2 Is Optimized for Light Harvesting in Plants. CheM, 2019, 5, 575-584.	11.7	50
34	Ultrabroadband two-dimensional electronic spectroscopy reveals energy flow pathways in LHCII across the visible spectrum. EPJ Web of Conferences, 2019, 205, 09034.	0.3	1
35	Microsecond and millisecond dynamics in the photosynthetic protein LHCSR1 observed by single-molecule correlation spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11247-11252.	7.1	30
36	Design of a highly thermostable hemicellulose-degrading blend from Thermotoga neapolitana for the treatment of lignocellulosic biomass. Journal of Biotechnology, 2019, 296, 42-52.	3.8	24

#	Article	IF	CITATIONS
37	LHC-like proteins involved in stress responses and biogenesis/repair of the photosynthetic apparatus. Biochemical Journal, 2019, 476, 581-593.	3.7	57
38	LHCSR3 is a nonphotochemical quencher of both photosystems in <i>Chlamydomonas reinhardtii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4212-4217.	7.1	66
39	Look for methods, not conclusions. Cell Death and Disease, 2019, 10, 931.	6.3	1
40	The <i>Physcomitrella patens</i> gene atlas project: largeâ€scale <scp>RNA</scp> â€seq based expression data. Plant Journal, 2018, 95, 168-182.	5.7	115
41	Molecular mechanisms involved in plant photoprotection. Biochemical Society Transactions, 2018, 46, 467-482.	3.4	151
42	Light harvesting complex I is essential for Photosystem II photoprotection under variable light conditions in Arabidopsis thaliana. Environmental and Experimental Botany, 2018, 154, 89-98.	4.2	4
43	Loss of LHCI system affects LHCII re-distribution between thylakoid domains upon state transitions. Photosynthesis Research, 2018, 135, 251-261.	2.9	16
44	A LHCB9-dependent photosystem I megacomplex induced under low light in Physcomitrella patens. Nature Plants, 2018, 4, 910-919.	9.3	32
45	Dynamic Changes between Two LHCX-Related Energy Quenching Sites Control Diatom Photoacclimation. Plant Physiology, 2018, 177, 953-965.	4.8	46
46	Magnetosomes Extracted from <i>Magnetospirillum gryphiswaldense</i> as Theranostic Agents in an Experimental Model of Glioblastoma. Contrast Media and Molecular Imaging, 2018, 2018, 1-12.	0.8	31
47	Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes. Nature Plants, 2017, 3, 17033.	9.3	121
48	A systems-wide understanding of photosynthetic acclimation in algae and higher plants. Journal of Experimental Botany, 2017, 68, 2667-2681.	4.8	26
49	A Light Harvesting Complex-Like Protein in Maintenance of Photosynthetic Components in Chlamydomonas. Plant Physiology, 2017, 174, 2419-2433.	4.8	21
50	Snapshot Transient Absorption Spectroscopy of Carotenoid Radical Cations in High-Light-Acclimating Thylakoid Membranes. Journal of Physical Chemistry Letters, 2017, 8, 5548-5554.	4.6	26
51	Functional modulation of LHCSR1 protein from Physcomitrella patens by zeaxanthin binding and low pH. Scientific Reports, 2017, 7, 11158.	3.3	21
52	Single-molecule spectroscopy of LHCSR1 protein dynamics identifies two distinct states responsible for multi-timescale photosynthetic photoprotection. Nature Chemistry, 2017, 9, 772-778.	13.6	79
53	The <scp>STN</scp> 8 kinaseâ€ <scp>PBCP</scp> phosphatase system is responsible for highâ€lightâ€induced reversible phosphorylation of the <scp>PSII</scp> inner antenna subunit <scp>CP</scp> 29 in rice. Plant Journal, 2017, 89, 681-691.	5.7	23
54	Algae: A New Biomass Resource. , 2017, , 1-33.		1

4

#	Article	IF	CITATIONS
55	The function of LHCBM4/6/8 antenna proteins inChlamydomonas reinhardtii. Journal of Experimental Botany, 2016, 68, erw462.	4.8	31
56	Electron transfer between carotenoid and chlorophyll contributes to quenching in the LHCSR1 protein from Physcomitrella patens. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1870-1878.	1.0	51
57	Observation of Electronic Excitation Transfer Through Light Harvesting Complex II Using Two-Dimensional Electronic–Vibrational Spectroscopy. Journal of Physical Chemistry Letters, 2016, 7, 4197-4206.	4.6	51
58	LHCII can substitute for LHCI as an antenna for photosystem I but with reduced light-harvesting capacity. Nature Plants, 2016, 2, 16131.	9.3	20
59	Characterization of magnetic nanoparticles from <i>Magnetospirillum Gryphiswaldense</i> as potential theranostics tools. Contrast Media and Molecular Imaging, 2016, 11, 139-145.	0.8	34
60	Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii. Journal of Biological Chemistry, 2016, 291, 7334-7346.	3.4	100
61	Multi-Level Light Capture Control in Plants and Green Algae. Trends in Plant Science, 2016, 21, 55-68.	8.8	103
62	Studying Spatio-Energetic Dynamics in Light Harvesting Complex II using Two-Dimensional Electronic-Vibrational Spectroscopy. , 2016, , .		0
63	Sharing light between two photosystems: mechanism of state transitions. Current Opinion in Plant Biology, 2015, 25, 71-78.	7.1	94
64	Antenna size reduction as a strategy to increase biomass productivity: a great potential not yet realized. Journal of Applied Phycology, 2015, 27, 1063-1077.	2.8	88
65	Biogenesis of light harvesting proteins. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 861-871.	1.0	66
66	Light-Harvesting Complex Stress-Related Proteins Catalyze Excess Energy Dissipation in Both Photosystems of <i>Physcomitrella patens</i> . Plant Cell, 2015, 27, 3213-3227.	6.6	54
67	Heterologous Expression of Moss Light-harvesting Complex Stress-related 1 (LHCSR1), the Chlorophyll a-Xanthophyll Pigment-protein Complex Catalyzing Non-photochemical Quenching, in Nicotiana sp Journal of Biological Chemistry, 2015, 290, 24340-24354.	3.4	26
68	Long-term acclimatory response to excess excitation energy: evidence for a role of hydrogen peroxide in the regulation of photosystem II antenna size. Journal of Experimental Botany, 2015, 66, 7151-7164.	4.8	43
69	High Light-Dependent Phosphorylation of Photosystem II Inner Antenna CP29 in Monocots Is STN7 Independent and Enhances Nonphotochemical Quenching. Plant Physiology, 2015, 167, 457-471.	4.8	36
70	Non-photochemical quenching and xanthophyll cycle activities in six green algal species suggest mechanistic differences in the process of excess energy dissipation. Journal of Plant Physiology, 2015, 172, 92-103.	3.5	82
71	Magnetic Nanoparticles from Magnetospirillum gryphiswaldense Increase the Efficacy of Thermotherapy in a Model of Colon Carcinoma. PLoS ONE, 2014, 9, e108959.	2.5	49
72	Domestication of the green alga Chlorella sorokiniana: reduction of antenna size improves light-use efficiency in a photobioreactor. Biotechnology for Biofuels, 2014, 7, 157.	6.2	147

#	Article	IF	CITATIONS
73	Light-Harvesting Complex Protein LHCBM9 Is Critical for Photosystem II Activity and Hydrogen Production in <i>Chlamydomonas reinhardtii</i> Â Â. Plant Cell, 2014, 26, 1598-1611.	6.6	64
74	Integration of Carbon Assimilation Modes with Photosynthetic Light Capture in the Green Alga Chlamydomonas reinhardtii. Molecular Plant, 2014, 7, 1545-1559.	8.3	27
75	On the origin of a slowly reversible fluorescence decay component in the <i>Arabidopsis npq4</i> mutant. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130221.	4.0	49
76	Regulation of photosystem I light harvesting by zeaxanthin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2431-8.	7.1	73
77	Photoprotective Mechanisms: Carotenoids. , 2014, , 393-435.		11
78	Molecular Mechanisms for Activation of Non-Photochemical Fluorescence Quenching: From Unicellular Algae to Mosses and Higher Plants. Advances in Photosynthesis and Respiration, 2014, , 315-331.	1.0	3
79	Post-transcriptional control of light-harvesting genes expression under light stress. Plant Molecular Biology, 2013, 82, 147-154.	3.9	54
80	Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photooxidative stress in <scp>A</scp> rabidopsis. Plant Journal, 2013, 76, 568-579.	5.7	114
81	Algae, a New Biomass Resource. , 2013, , 1-26.		1
82	An NMR comparison of the light-harvesting complex II (LHCII) in active and photoprotective states reveals subtle changes in the chlorophyll a ground-state electronic structures. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 738-744.	1.0	25
83	Zeaxanthin Binds to Light-Harvesting Complex Stress-Related Protein to Enhance Nonphotochemical Quenching in <i>Physcomitrella patens</i> . Plant Cell, 2013, 25, 3519-3534.	6.6	109
84	Enhance knowledge on sustainable use of plant protection products within the framework of the Sustainable Use Directive. Pest Management Science, 2013, 69, 883-888.	3.4	18
85	Effects of altered <i>α</i> ―and <i>β</i> â€branch carotenoid biosynthesis on photoprotection and wholeâ€plant acclimation of <i>Arabidopsis</i> to photoâ€oxidative stress. Plant, Cell and Environment, 2013, 36, 438-453.	5.7	24
86	The <i>Arabidopsis nox</i> Mutant Lacking Carotene Hydroxylase Activity Reveals a Critical Role for Xanthophylls in Photosystem I Biogenesis A. Plant Cell, 2013, 25, 591-608.	6.6	34
87	Chlorophyll Triplet Quenching and Photoprotection in the Higher Plant Monomeric Antenna Protein Lhcb5. Journal of Physical Chemistry B, 2013, 117, 11337-11348.	2.6	68
88	Biogenesis of photosynthetic complexes in the chloroplast of <i><scp>C</scp>hlamydomonas reinhardtii</i> requires <scp>ARSA</scp> 1, a homolog of prokaryotic arsenite transporter and eukaryotic <scp>TRC</scp> 40 for guided entry of tailâ€anchored proteins. Plant Journal, 2013, 73, 850-861.	5.7	26
89	Regenerative Therapies for Diabetic Microangiopathy. Experimental Diabetes Research, 2012, 2012, 1-11.	3.8	26
90	LHCBM1 and LHCBM2/7 Polypeptides, Components of Major LHCII Complex, Have Distinct Functional Roles in Photosynthetic Antenna System of Chlamydomonas reinhardtii. Journal of Biological Chemistry, 2012, 287, 16276-16288.	3.4	81

#	Article	IF	CITATIONS
91	Enhancement of Non-Photochemical Quenching in the Bryophyte Physcomitrella patens During Acclimation to Salt and Osmotic Stress. Plant and Cell Physiology, 2012, 53, 1815-1825.	3.1	53
92	Acclimation of Chlamydomonas reinhardtii to Different Growth Irradiances. Journal of Biological Chemistry, 2012, 287, 5833-5847.	3.4	179
93	Coexistence of plant and algal energy dissipation mechanisms in the moss <i>Physcomitrella patens</i> . New Phytologist, 2012, 196, 763-773.	7.3	61
94	Zeaxanthin Protects Plant Photosynthesis by Modulating Chlorophyll Triplet Yield in Specific Light-harvesting Antenna Subunits. Journal of Biological Chemistry, 2012, 287, 41820-41834.	3.4	118
95	Retrograde Signaling and Photoprotection in a gun4 Mutant of Chlamydomonas reinhardtii. Molecular Plant, 2012, 5, 1242-1262.	8.3	52
96	Regulation of the pigment optical density of an algal cell: Filling the gap between photosynthetic productivity in the laboratory and in mass culture. Journal of Biotechnology, 2012, 162, 115-123.	3.8	83
97	Role of Xanthophylls in Light Harvesting in Green Plants: A Spectroscopic Investigation of Mutant LHCII and Lhcb Pigment–Protein Complexes. Journal of Physical Chemistry B, 2012, 116, 3834-3849.	2.6	46
98	The Arabidopsis <i>szl1</i> Mutant Reveals a Critical Role of β-Carotene in Photosystem I Photoprotection Â. Plant Physiology, 2012, 159, 1745-1758.	4.8	131
99	A quadruple mutant of Arabidopsis reveals a β-carotene hydroxylation activity for LUT1/CYP97C1 and a regulatory role of xanthophylls on determination of the PSI/PSII ratio. BMC Plant Biology, 2012, 12, 50.	3.6	33
100	Elucidation of the timescales and origins of quantum electronic coherence in LHCII. Nature Chemistry, 2012, 4, 389-395.	13.6	156
101	Evolution and functional properties of Photosystem II light harvesting complexes in eukaryotes. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 143-157.	1.0	144
102	Assembly of Light Harvesting Pigment-Protein Complexes in Photosynthetic Eukaryotes. Advances in Photosynthesis and Respiration, 2012, , 113-126.	1.0	9
103	Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3848-3853.	7.1	47
104	Role of PSBS and LHCSR in <i>Physcomitrella patens</i> acclimation to high light and low temperature. Plant, Cell and Environment, 2011, 34, 922-932.	5.7	76
105	First solid-state NMR analysis of uniformly 13C-enriched major light-harvesting complexes from Chlamydomonas reinhardtii and identification of protein and cofactor spin clusters. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 437-443.	1.0	15
106	Mutagenesis and phenotypic selection as a strategy toward domestication of Chlamydomonas reinhardtii strains for improved performance in photobioreactors. Photosynthesis Research, 2011, 108, 107-120.	2.9	65
107	Reactive oxygen species and transcript analysis upon excess light treatment in wild-type Arabidopsis thaliana vs a photosensitive mutant lacking zeaxanthin and lutein. BMC Plant Biology, 2011, 11, 62.	3.6	88
108	Quenching in Arabidopsis thaliana Mutants Lacking Monomeric Antenna Proteins of Photosystem II. Journal of Biological Chemistry, 2011, 286, 36830-36840.	3.4	50

#	Article	IF	CITATIONS
109	<i>Arabidopsis</i> Mutants Deleted in the Light-Harvesting Protein Lhcb4 Have a Disrupted Photosystem II Macrostructure and Are Defective in Photoprotection. Plant Cell, 2011, 23, 2659-2679.	6.6	141
110	A Red-shifted Antenna Protein Associated with Photosystem II in Physcomitrella patens. Journal of Biological Chemistry, 2011, 286, 28978-28987.	3.4	28
111	Analysis of LhcSR3, a Protein Essential for Feedback De-Excitation in the Green Alga Chlamydomonas reinhardtii. PLoS Biology, 2011, 9, e1000577.	5.6	260
112	Regulation of plant light harvesting by thermal dissipation of excess energy. Biochemical Society Transactions, 2010, 38, 651-660.	3.4	126
113	Purification of structurally intact grana from plants thylakoids membranes. Journal of Bioenergetics and Biomembranes, 2010, 42, 37-45.	2.3	18
114	Functional analysis of Photosystem I light-harvesting complexes (Lhca) gene products of Chlamydomonas reinhardtii. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 212-221.	1.0	58
115	Determining Chlorophyll Orientation in the CP29 Light Harvesting Complex with Arithmetic Polarized 2D Electronic Spectroscopy. , 2010, , .		Ο
116	Enhanced Photoprotection by Protein-Bound vs Free Xanthophyll Pools: A Comparative Analysis of Chlorophyll b and Xanthophyll Biosynthesis Mutants. Molecular Plant, 2010, 3, 576-593.	8.3	168
117	Identification of the Chromophores Involved in Aggregation-dependent Energy Quenching of the Monomeric Photosystem II Antenna Protein Lhcb5. Journal of Biological Chemistry, 2010, 285, 28309-28321.	3.4	34
118	Mutation Analysis of Violaxanthin De-epoxidase Identifies Substrate-binding Sites and Residues Involved in Catalysis. Journal of Biological Chemistry, 2010, 285, 23763-23770.	3.4	59
119	Effect of Antenna-Depletion in Photosystem II on Excitation Energy Transfer in Arabidopsis thaliana. Biophysical Journal, 2010, 98, 922-931.	0.5	96
120	Dynamics of zeaxanthin binding to the photosystem II monomeric antenna protein Lhcb6 (CP24) and modulation of its photoprotection properties. Archives of Biochemistry and Biophysics, 2010, 504, 67-77.	3.0	43
121	Spectroscopic elucidation of uncoupled transition energies in the major photosynthetic light-harvesting complex, LHCII. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13276-13281.	7.1	62
122	<i>Physcomitrella patens</i> mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11128-11133.	7.1	185
123	Elucidation of Electronic Structure and Quantum Coherence in LHCII with Polarized 2D Spectroscopy. , 2010, , .		1
124	Analysis of the Chloroplast Protein Kinase Stt7 during State Transitions. PLoS Biology, 2009, 7, e1000045.	5.6	145
125	Light-induced Dissociation of an Antenna Hetero-oligomer Is Needed for Non-photochemical Quenching Induction. Journal of Biological Chemistry, 2009, 284, 15255-15266.	3.4	268
126	Lutein Can Act as a Switchable Charge Transfer Quencher in the CP26 Light-harvesting Complex. Journal of Biological Chemistry, 2009, 284, 2830-2835.	3.4	72

#	Article	IF	CITATIONS
127	Occupancy and Functional Architecture of the Pigment Binding Sites of Photosystem II Antenna Complex Lhcb5. Journal of Biological Chemistry, 2009, 284, 8103-8113.	3.4	38
128	A Structural Basis for the pH-Dependent Xanthophyll Cycle in <i>Arabidopsis thaliana</i> Â Â. Plant Cell, 2009, 21, 2036-2044.	6.6	142
129	Improper excess light energy dissipation in Arabidopsis results in a metabolic reprogramming. BMC Plant Biology, 2009, 9, 12.	3.6	66
130	Parallel pigment and transcriptomic analysis of four barley Albina and Xantha mutants reveals the complex network of the chloroplast-dependent metabolism. Plant Molecular Biology, 2009, 71, 173-191.	3.9	17
131	Investigating energy partitioning during photosynthesis using an expanded quantum yield convention. Chemical Physics, 2009, 357, 151-158.	1.9	33
132	Quantum Coherence Enabled Determination of the Energy Landscape in Light-Harvesting Complex II. Journal of Physical Chemistry B, 2009, 113, 16291-16295.	2.6	266
133	Pathways of Energy Flow in LHCII from Two-Dimensional Electronic Spectroscopy. Journal of Physical Chemistry B, 2009, 113, 15352-15363.	2.6	175
134	Lutein Accumulation in the Absence of Zeaxanthin Restores Nonphotochemical Quenching in the <i>Arabidopsis thaliana npq1</i> Mutant Â. Plant Cell, 2009, 21, 1798-1812.	6.6	183
135	The Occurrence of the <i>psbS</i> Gene Product in <i>ChlamydomonasÂreinhardtii</i> and in Other Photosynthetic Organisms and Its Correlation with Energy Quenching ^{â€} . Photochemistry and Photobiology, 2008, 84, 1359-1370.	2.5	94
136	Trap-Limited Charge Separation Kinetics in Higher Plant Photosystem I Complexes. Biophysical Journal, 2008, 94, 3601-3612.	0.5	88
137	Photoprotection in higher plants: The putative quenching site is conserved in all outer light-harvesting complexes of Photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 1263-1267.	1.0	85
138	Architecture of a Charge-Transfer State Regulating Light Harvesting in a Plant Antenna Protein. Science, 2008, 320, 794-797.	12.6	492
139	Kinetic Modeling of Charge-Transfer Quenching in the CP29 Minor Complex. Journal of Physical Chemistry B, 2008, 112, 13418-13423.	2.6	24
140	Zeaxanthin Radical Cation Formation in Minor Light-harvesting Complexes of Higher Plant Antenna. Journal of Biological Chemistry, 2008, 283, 3550-3558.	3.4	193
141	Photoprotection in the Antenna Complexes of Photosystem II. Journal of Biological Chemistry, 2008, 283, 6184-6192.	3.4	177
142	Interactions between the Photosystem II Subunit PsbS and Xanthophylls Studied in Vivo and in Vitro. Journal of Biological Chemistry, 2008, 283, 8434-8445.	3.4	125
143	Minor Antenna Proteins CP24 and CP26 Affect the Interactions between Photosystem II Subunits and the Electron Transport Rate in Grana Membranes of <i>Arabidopsis</i> Â. Plant Cell, 2008, 20, 1012-1028.	6.6	178
144	In Silico and Biochemical Analysis of Physcomitrella patens Photosynthetic Antenna: Identification of Subunits which Evolved upon Land Adaptation. PLoS ONE, 2008, 3, e2033.	2.5	121

#	Article	lF	CITATIONS
145	Kinetic Description of Energy and Charge transfer Processes in PSI from Arabidopsis thaliana. , 2008, , 323-326.		0
146	Contrasting Behavior of Higher Plant Photosystem I and II Antenna Systems during Acclimation. Journal of Biological Chemistry, 2007, 282, 8947-8958.	3.4	269
147	Different Roles of α- and β-Branch Xanthophylls in Photosystem Assembly and Photoprotection. Journal of Biological Chemistry, 2007, 282, 35056-35068.	3.4	133
148	The Arabidopsis aba4-1 Mutant Reveals a Specific Function for Neoxanthin in Protection against Photooxidative Stress. Plant Cell, 2007, 19, 1048-1064.	6.6	166
149	Zeaxanthin Has Enhanced Antioxidant Capacity with Respect to All Other Xanthophylls in Arabidopsis Leaves and Functions Independent of Binding to PSII Antennae. Plant Physiology, 2007, 145, 1506-1520.	4.8	355
150	Photosynthetic Antenna Size in Higher Plants Is Controlled by the Plastoquinone Redox State at the Post-transcriptional Rather than Transcriptional Level. Journal of Biological Chemistry, 2007, 282, 29457-29469.	3.4	69
151	A specific binding site for neoxanthin in the monomeric antenna proteins CP26 and CP29 of Photosystem II. FEBS Letters, 2007, 581, 4704-4710.	2.8	73
152	Understanding the Changes in the Circular Dichroism of Light Harvesting Complex II upon Varying Its Pigment Composition and Organization. Biochemistry, 2007, 46, 4745-4754.	2.5	92
153	Short- and Long-Term Operation of the Lutein-Epoxide Cycle in Light-Harvesting Antenna Complexes. Plant Physiology, 2007, 144, 926-941.	4.8	59
154	Singlet and Triplet State Transitions of Carotenoids in the Antenna Complexes of Higher-Plant Photosystem lâ€. Biochemistry, 2007, 46, 3846-3855.	2.5	41
155	The Low-Energy Forms of Photosystem I Light-Harvesting Complexes: Spectroscopic Properties and Pigment-Pigment Interaction Characteristics. Biophysical Journal, 2007, 93, 2418-2428.	0.5	65
156	Structure, function and regulation of plant photosystem I. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 335-352.	1.0	198
157	The light stress-induced protein ELIP2 is a regulator of chlorophyll synthesis in Arabidopsis thaliana. Plant Journal, 2007, 50, 795-809.	5.7	128
158	Nonphotochemical Quenching of Chlorophyll Fluorescence inChlamydomonas reinhardtii. Biochemistry, 2006, 45, 1490-1498.	2.5	81
159	Probing the structure of Lhca3 by mutation analysis. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1607-1613.	1.0	42
160	Elucidation of the β-carotene hydroxylation pathway inArabidopsis thaliana. FEBS Letters, 2006, 580, 4718-4722.	2.8	64
161	Biochemical and structural analyses of a higher plant photosystem II supercomplex of a photosystem I-less mutant of barley. FEBS Journal, 2006, 273, 4616-4630.	4.7	58
162	Photosynthesis research in Italy: a review. Photosynthesis Research, 2006, 88, 211-240.	2.9	9

#	Article	IF	CITATIONS
163	Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivo under strong light. BMC Plant Biology, 2006, 6, 32.	3.6	232
164	Transcriptome Analysis of Cold Acclimation in Barley Albina and Xantha Mutants. Plant Physiology, 2006, 141, 257-270.	4.8	164
165	LHCI: The Antenna Complex of Photosystem I in Plants and Green Algae. , 2006, , 119-137.		7
166	Formate binding near the redox-active TyrosineD in Photosystem II: consequences on the properties of TyrD. Photosynthesis Research, 2005, 84, 139-144.	2.9	12
167	Differential accumulation ofLhcbgene products in thylakoid membranes ofZea maysplants grown under contrasting light and temperature conditions. Proteomics, 2005, 5, 758-768.	2.2	65
168	Pigment-Pigment Interactions in Lhca4 Antenna Complex of Higher Plants Photosystem I. Journal of Biological Chemistry, 2005, 280, 20612-20619.	3.4	63
169	The Association of the Antenna System to Photosystem I in Higher Plants. Journal of Biological Chemistry, 2005, 280, 31050-31058.	3.4	38
170	A Mechanism of Nonphotochemical Energy Dissipation, Independent from PsbS, Revealed by a Conformational Change in the Antenna Protein CP26. Plant Cell, 2005, 17, 1217-1232.	6.6	224
171	Quenching of Chlorophyll Triplet States by Carotenoids in Reconstituted Lhca4 Subunit of Peripheral Light-Harvesting Complex of Photosystem I. Biochemistry, 2005, 44, 8337-8346.	2.5	49
172	Excitation Decay Pathways of Lhca Proteins:Â A Time-Resolved Fluorescence Study. Journal of Physical Chemistry B, 2005, 109, 21150-21158.	2.6	33
173	The low energy emitting states of the Lhca4 subunit of higher plant photosystem I. FEBS Letters, 2005, 579, 2071-2076.	2.8	9
174	Excitation Energy Transfer Pathways in Lhca4. Biophysical Journal, 2005, 88, 1959-1969.	0.5	22
175	Slowly reversible de-epoxidation of lutein-epoxide in deep shade leaves of a tropical tree legume may 'lock-in' lutein-based photoprotection during acclimation to strong light. Journal of Experimental Botany, 2004, 56, 461-468.	4.8	75
176	A zeaxanthin-independent nonphotochemical quenching mechanism localized in the photosystem II core complex. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12375-12380.	7.1	132
177	Origin of the 701-nm Fluorescence Emission of the Lhca2 Subunit of Higher Plant Photosystem I. Journal of Biological Chemistry, 2004, 279, 48543-48549.	3.4	39
178	The Effect of Zeaxanthin as the Only Xanthophyll on the Structure and Function of the Photosynthetic Apparatus in Arabidopsis thaliana. Journal of Biological Chemistry, 2004, 279, 13878-13888.	3.4	140
179	Regulation of Photosynthetic Light Harvesting Involves Intrathylakoid Lumen pH Sensing by the PsbS Protein. Journal of Biological Chemistry, 2004, 279, 22866-22874.	3.4	483
180	A Zea mays 39-kDa thylakoid transglutaminase catalyses the modification by polyamines of light-harvesting complexï;½II in a light-dependent way. Planta, 2004, 219, 754-64.	3.2	58

#	Article	IF	CITATIONS
181	A Look within LHCII:  Differential Analysis of the Lhcb1â^'3 Complexes Building the Major Trimeric Antenna Complex of Higher-Plant Photosynthesis. Biochemistry, 2004, 43, 9467-9476.	2.5	134
182	Stark effect measurements on monomers and trimers of reconstituted light-harvesting complex II of plants. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1656, 177-188.	1.0	11
183	Suborganellar localisation and effect of light on Helianthus tuberosus chloroplast transglutaminases and their substrates. Planta, 2003, 217, 84-95.	3.2	58
184	Occurrence of the lutein-epoxide cycle in mistletoes of the Loranthaceae and Viscaceae. Planta, 2003, 217, 868-879.	3.2	54
185	Carotenoid to chlorophyll energy transfer in light harvesting complex II from Arabidopsis thaliana probed by femtosecond fluorescence upconversion. Chemical Physics Letters, 2003, 379, 305-313.	2.6	58
186	Mechanistic aspects of the xanthophyll dynamics in higher plant thylakoids. Physiologia Plantarum, 2003, 119, 347-354.	5.2	96
187	Red Spectral Forms of Chlorophylls in Green Plant PSIâ^ A Site-Selective and High-Pressure Spectroscopy Study+. Journal of Physical Chemistry B, 2003, 107, 9086-9093.	2.6	69
188	The Nature of a Chlorophyll Ligand in Lhca Proteins Determines the Far Red Fluorescence Emission Typical of Photosystem I. Journal of Biological Chemistry, 2003, 278, 49223-49229.	3.4	167
189	Genetic analysis of the expression of the cold-regulated gene cor14b: a way toward the identification of components of the cold response signal transduction in Triticeae. Canadian Journal of Botany, 2003, 81, 1162-1167.	1.1	21
190	Chlorophyll b to Chlorophyll a Energy Transfer Kinetics in the CP29 Antenna Complex: A Comparative Femtosecond Absorption Study between Native and Reconstituted Proteins. Biophysical Journal, 2003, 84, 2508-2516.	0.5	44
191	Energy Transfer Pathways in the Minor Antenna Complex CP29 of Photosystem II: A Femtosecond Study of Carotenoid to Chlorophyll Transfer on Mutant and WT Complexes. Biophysical Journal, 2003, 84, 2517-2532.	0.5	54
192	Recombinant Lhca2 and Lhca3 Subunits of the Photosystem I Antenna System. Biochemistry, 2003, 42, 4226-4234.	2.5	91
193	Xanthophyll Binding Sites of the CP29 (Lhcb4) Subunit of Higher Plant Photosystem II Investigated by Domain Swapping and Mutation Analysis. Journal of Biological Chemistry, 2003, 278, 19190-19198.	3.4	31
194	cor Gene Expression in Barley Mutants Affected in Chloroplast Development and Photosynthetic Electron Transport. Plant Physiology, 2003, 131, 793-802.	4.8	62
195	Mutation Analysis of Lhca1 Antenna Complex. Journal of Biological Chemistry, 2002, 277, 36253-36261.	3.4	77
196	Dynamics of Chromophore Binding to Lhc Proteins in Vivo and in Vitro during Operation of the Xanthophyll Cycle. Journal of Biological Chemistry, 2002, 277, 36913-36920.	3.4	95
197	Biochemical Properties of the PsbS Subunit of Photosystem II Either Purified from Chloroplast or Recombinant. Journal of Biological Chemistry, 2002, 277, 22750-22758.	3.4	137
198	A Structural Investigation of the Central ChlorophyllaBinding Sites in the Minor Photosystem II Antenna Protein,Lhcb4â€. Biochemistry, 2002, 41, 2305-2310.	2.5	10

#	Article	IF	CITATIONS
199	Chromophore Organization in the Higher-Plant Photosystem II Antenna Protein CP26. Biochemistry, 2002, 41, 7334-7343.	2.5	186
200	Carotenoid S1 State in a Recombinant Light-Harvesting Complex of Photosystem II. Biochemistry, 2002, 41, 439-450.	2.5	139
201	The Lhca antenna complexes of higher plants photosystem I. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1556, 29-40.	1.0	152
202	The Calculated In Vitro and In Vivo Chlorophyll a Absorption Bandshape. Biophysical Journal, 2002, 82, 378-390.	0.5	49
203	Functional architecture of the major light-harvesting complex from higher plants. Journal of Molecular Biology, 2001, 314, 1157-1166.	4.2	150
204	Carotenoid-to-Chlorophyll Energy Transfer in Recombinant Major Light-Harvesting Complex (LHCII) of Higher Plants. I. Femtosecond Transient Absorption Measurements. Biophysical Journal, 2001, 80, 901-915.	0.5	207
205	Pigment conformation and pigment-protein interactions in the reconstituted Lhcb4 antenna protein. FEBS Letters, 2001, 492, 54-57.	2.8	8
206	Excitation Energy Transfer in Dimeric Light Harvesting Complex I:Â A Combined Streak-Camera/Fluorescence Upconversion Study. Journal of Physical Chemistry B, 2001, 105, 10132-10139.	2.6	49
207	Time-Resolved Fluorescence Analysis of the Photosystem II Antenna Proteins in Detergent Micelles and Liposomesâ€. Biochemistry, 2001, 40, 12552-12561.	2.5	210
208	Photochemical Behavior of Xanthophylls in the Recombinant Photosystem II Antenna Complex, CP26â€. Biochemistry, 2001, 40, 1220-1225.	2.5	49
209	The Chloroplast Gene ycf9 Encodes a Photosystem II (PSII) Core Subunit, PsbZ, That Participates in PSII Supramolecular Architecture. Plant Cell, 2001, 13, 1347-1368.	6.6	109
210	Time-resolved fluorescence analysis of the recombinant photosystem II antenna complex CP29. FEBS Journal, 2001, 268, 260-267.	0.2	66
211	The Major Antenna Complex of Photosystem II Has a Xanthophyll Binding Site Not Involved in Light Harvesting. Journal of Biological Chemistry, 2001, 276, 35924-35933.	3.4	215
212	The Chloroplast Gene ycf9 Encodes a Photosystem II (PSII) Core Subunit, PsbZ, That Participates in PSII Supramolecular Architecture. Plant Cell, 2001, 13, 1347.	6.6	1
213	The Chloroplast Gene <i>ycf9</i> Encodes a Photosystem II (PSII) Core Subunit, PsbZ, That Participates in PSII Supramolecular Architecture. Plant Cell, 2001, 13, 1347-1368.	6.6	65
214	Lhc proteins and the regulation of photosynthetic light harvesting function by xanthophylls. , 2000, 64, 243-256.		149
215	The Soret absorption properties of carotenoids and chlorophylls in antenna complexes of higher plants. Photosynthesis Research, 2000, 64, 221-231.	2.9	88
216	Absorption spectra of chlorophyll a and b in Lhcb protein environment. Photosynthesis Research, 2000, 64, 233-242.	2.9	49

#	Article	IF	CITATIONS
217	Calcium Binding to the Photosystem II Subunit CP29. Journal of Biological Chemistry, 2000, 275, 12781-12788.	3.4	26
218	Energy Transfer among CP29 Chlorophylls: Calculated Förster Rates and Experimental Transient Absorption at Room Temperature. Biophysical Journal, 2000, 79, 1706-1717.	0.5	55
219	Evidence for Two Spectroscopically Different Dimers of Light-Harvesting Complex I from Green Plantsâ€. Biochemistry, 2000, 39, 8625-8631.	2.5	65
220	Chlorophyll Binding to Monomeric Light-harvesting Complex. Journal of Biological Chemistry, 1999, 274, 33510-33521.	3.4	204
221	Xanthophyll Cycle Pigment Localization and Dynamics during Exposure to Low Temperatures and Light Stress inVinca major1. Plant Physiology, 1999, 120, 727-738.	4.8	109
222	Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 10056-10061.	7.1	224
223	Carotenoid-binding Sites of the Major Light-harvesting Complex II of Higher Plants. Journal of Biological Chemistry, 1999, 274, 29613-29623.	3.4	215
224	Multiple light-harvesting II polypeptides from maize mesophyll chloroplasts are distinct gene products. Journal of Photochemistry and Photobiology B: Biology, 1999, 49, 50-60.	3.8	7
225	Title is missing!. Photosynthesis Research, 1999, 61, 281-290.	2.9	19
226	Multiple Types of Association of Photosystem II and Its Light-Harvesting Antenna in Partially Solubilized Photosystem II Membranes. Biochemistry, 1999, 38, 2233-2239.	2.5	191
227	The Interaction between Cold and Light Controls the Expression of the Cold-Regulated Barley Gene cor14b and the Accumulation of the Corresponding Protein1. Plant Physiology, 1999, 119, 671-680.	4.8	113
228	The neoxanthin binding site of the major light harvesting complex (LHCII) from higher plants. FEBS Letters, 1999, 456, 1-6.	2.8	117
229	Orientation of Chlorophyll Transition Moments in the Higher-Plant Light-Harvesting Complex CP29. Biochemistry, 1999, 38, 12974-12983.	2.5	52
230	The photosystem II subunit CP29 can be phosphorylated in both C3 and C4 plants as suggested by sequence analysis. Plant Molecular Biology, 1998, 36, 11-22.	3.9	41
231	Pigment-binding properties of the recombinant photosystem II subunit CP26 reconstituted in vitro. FEBS Journal, 1998, 253, 653-658.	0.2	29
232	Nearest-neighbor analysis of a Photosystem II complex from Marchantia polymorpha L. (liverwort), which contains reaction center and antenna proteins. FEBS Journal, 1998, 255, 196-205.	0.2	79
233	Identification and characterization of photosystem II chlorophyll a / b binding proteins in Marchantia polymorpha L Planta, 1998, 204, 260-267.	3.2	2
234	Higher plants light harvesting proteins. Structure and function as revealed by mutation analysis of either protein or chromophore moieties. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1365, 207-214.	1.0	90

#	Article	IF	CITATIONS
235	The Relationship between the Binding of Dicyclohexylcarbodiimide and Quenching of Chlorophyll Fluorescence in the Light-Harvesting Proteins of Photosystem IIâ€. Biochemistry, 1998, 37, 11586-11591.	2.5	36
236	In VitroReconstitution of the Recombinant Photosystem II Light-harvesting Complex CP24 and Its Spectroscopic Characterization. Journal of Biological Chemistry, 1998, 273, 17154-17165.	3.4	65
237	Mutation analysis of either protein or chromophore moieties in Higher Plants Light Harvesting Proteins. , 1998, , 253-258.		0
238	Zeaxanthin-induced fluorescence quenching in the minor antenna CP29. , 1998, , 333-336.		2
239	Cold-Resistant and Cold-Sensitive Maize Lines Differ in the Phosphorylation of the Photosystem II Subunit, CP29. Plant Physiology, 1997, 115, 171-180.	4.8	48
240	Analysis of Some Optical Properties of a Native and Reconstituted Photosystem II Antenna Complex, CP29:  Pigment Binding Sites Can Be Occupied by Chlorophyll a or Chlorophyll b and Determine Spectral Forms. Biochemistry, 1997, 36, 12984-12993.	2.5	76
241	Femtosecond Transient Absorption Study of Carotenoid to Chlorophyll Energy Transfer in the Light-Harvesting Complex II of Photosystem II. Biochemistry, 1997, 36, 281-287.	2.5	132
242	A single point mutation (E166Q) prevents dicyclohexylcarbodiimide binding to the photosystem II subunit CP29. FEBS Letters, 1997, 402, 151-156.	2.8	74
243	Novel aspects of chlorophyll a/b-binding proteins. Physiologia Plantarum, 1997, 100, 769-779.	5.2	94
244	Novel aspects of chlorophyll a/b-binding proteins. Physiologia Plantarum, 1997, 100, 769-779.	5.2	14
245	Conformational Changes Induced by Phosphorylation in the CP29 Subunit of Photosystem IIâ€,‡. Biochemistry, 1996, 35, 11142-11148.	2.5	66
246	Excited State Equilibration in the Photosystem lâ^'Light-Harvesting I Complex:  P700 Is Almost Isoenergetic with Its Antenna. Biochemistry, 1996, 35, 8572-8579.	2.5	169
247	A CK2 site is reversibly phosphorylated in the photosystem II subunit CP29. FEBS Letters, 1996, 399, 245-250.	2.8	46
248	Reconstitution and Pigment-Binding Properties of Recombinant CP29. FEBS Journal, 1996, 238, 112-120.	0.2	127
249	Biochemistry and Molecular Biology of Pigment Binding Proteins. , 1996, , 41-63.		10
250	Carotenoids: Localization and Function. , 1996, , 539-563.		57
251	Antenna structure and energy transfer in higher plant photosystems. Topics in Current Chemistry, 1996, , 147-181.	4.0	25
252	Biochemical and Functional Properties of Photosystem II in Agranal Membranes from Maize Mesophyll and Bundle Sheath Chloroplasts. FEBS Journal, 1995, 233, 709-719.	0.2	48

#	Article	IF	CITATIONS
253	A Post-translational Modification of the Photosystem II Subunit CP29 Protects Maize from Cold Stress. Journal of Biological Chemistry, 1995, 270, 8474-8481.	3.4	106
254	In Vitro Reconstitution and Pigment Binding Properties of Recombinant CP29 and CP24. Giornale Botanico Italiano (Florence, Italy: 1962), 1995, 129, 1073-1074.	0.0	0
255	Xantophyll Cycle Pigments in Wild Type Arabidopsis and in aba Mutants Blocked in Zeaxanthin Epoxidation. Giornale Botanico Italiano (Florence, Italy: 1962), 1995, 129, 1077-1078.	0.0	Ο
256	A Stepanov relation analysis of steady-state absorption and fluorescence spectra in the isolated D1/D2/cytochrome b-559 complex. Biochimica Et Biophysica Acta - Bioenergetics, 1995, 1229, 59-63.	1.0	19
257	Xantophyll Cycle Pigments in Wild Type Arabidopsis and in aba Mutants Blocked in Zeaxanthin Epoxidation. , 1995, , 3059-3062.		0
258	cDNA Deduced Amino Acid Sequences of Maize CP24 and CP26, the Two Major Zeaxanthin-Binding Proteins of Photosystem II. , 1995, , 199-202.		1
259	Thermal Equilibration of Excited States in Antenna of PSI-200. , 1995, , 183-186.		0
260	In Vitro Reconstitution and Pigment Binding Properties of Recombinant CP29 and CP24. , 1995, , 271-274.		1
261	Identification of chlorophyll-a/b proteins as substrates of transglutaminase activity in isolated chloroplasts of Helianthus tuberosus L Planta, 1994, 193, 283-289.	3.2	116
262	Three-dimensional structure of the higher-plant photosystem II reaction centre and evidence for its dimeric organization in vivo. FEBS Journal, 1994, 221, 307-315.	0.2	100
263	Heterogenous lipid distribution among chlorophyll-binding proteins of photosystem II in maize mesophyll chloroplasts. FEBS Journal, 1994, 221, 721-730.	0.2	77
264	The relation between the minor chlorophyll spectral forms and fluorescence quenching in aggregated light harvesting chlorophyll ab complex II. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1184, 279-283.	1.0	9
265	Polyamines in Chloroplasts: Post-Translational Modification of Clorophyll- <i>a/b</i> Proteins. Giornale Botanico Italiano (Florence, Italy: 1962), 1994, 128, 329-329.	0.0	0
266	Gaussian Decomposition of Absorption and Linear Dichroism Spectra of Outer Antenna Complexes of Photosystem II. Biochemistry, 1994, 33, 8982-8990.	2.5	66
267	Chlorophyll-proteins from maize seedlings grown under intermittent light conditions. Planta, 1993, 191, 265.	3.2	25
268	Carotenoid-binding proteins of photosystem II. FEBS Journal, 1993, 212, 297-303.	0.2	410
269	A study of Photosystem II fluorescence emission in terms of the antenna chlorophyll-protein complexes. Biochimica Et Biophysica Acta - Bioenergetics, 1993, 1183, 194-200.	1.0	30
270	Distribution of the chlorophyll spectral forms in the chlorophyll-protein complexes of photosystem II antenna. Biochemistry, 1993, 32, 3203-3210.	2.5	100

#	Article	IF	CITATIONS
271	Ionic permeability of the mitochondrial outer membrane. European Biophysics Journal, 1992, 20, 311-9.	2.2	26
272	A nomenclature for the genes encoding the chlorophylla/b-binding proteins of higher plants. Plant Molecular Biology Reporter, 1992, 10, 242-253.	1.8	155
273	A supramolecular light-harvesting complex from chloroplast photosystem-II membranes. FEBS Journal, 1992, 204, 317-326.	0.2	171
274	Reorganization of Thylakoid Membrane Lateral Heterogeneity Following State I — State II Transition. , 1992, , 511-520.		3
275	Characterization of chlorophyll a/b proteins of photosystem I from Chlamydomonas reinhardtii Journal of Biological Chemistry, 1992, 267, 25714-25721.	3.4	107
276	Organization of the Photosystem II Antenna System of Maize Plants Grown Under Intermittent Light Condition. , 1992, , 405-410.		0
277	Characterization of chlorophyll a/b proteins of photosystem I from Chlamydomonas reinhardtii. Journal of Biological Chemistry, 1992, 267, 25714-21.	3.4	94
278	Lateral redistribution of cytochrome b6/f complexes along thylakoid membranes upon state transitions Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 8262-8266.	7.1	191
279	Identification and characterization of the major components of theOncorhynchus mykiss Egg Chorion. Molecular Reproduction and Development, 1991, 28, 85-93.	2.0	67
280	Effects of a non-ionic detergent on the spectral properties and aggregation state of the light-harvesting chlorophyll a/b protein complex (LHCII). Journal of Photochemistry and Photobiology B: Biology, 1991, 9, 335-353.	3.8	47
281	The chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtii. Planta, 1991, 183, 423-33.	3.2	65
282	Subunit stoichiometry of the chloroplast photosystem II antenna system and aggregation state of the component chlorophyll a/b binding proteins. Journal of Biological Chemistry, 1991, 266, 8136-8142.	3.4	149
283	Subunit stoichiometry of the chloroplast photosystem II antenna system and aggregation state of the component chlorophyll a/b binding proteins. Journal of Biological Chemistry, 1991, 266, 8136-42.	3.4	115
284	THE RESOLUTION OF CHLOROPHYLL <i>a/b</i> BINDING PROTEINS BY A PREPARATIVE METHOD BASED ON FLAT BED ISOELECTRIC FOCUSING. Photochemistry and Photobiology, 1990, 51, 693-703.	2.5	97
285	CHLOROPHYLL BINDING PROTEINS WITH ANTENNA FUNCTION IN HIGHER PLANTS and GREEN ALGAE. Photochemistry and Photobiology, 1990, 52, 1187-1206.	2.5	161
286	Immunological studies on chlorophyll-a/b proteins and their distribution in thylakoid membrane domains. Planta, 1990, 181, 275-286.	3.2	60
287	Studies on the Herbicide Binding Site in Isolated Photosystem II Core Complexes from a Flat-Bed Isoelectrofocusing Method. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1990, 45, 366-372.	1.4	8
288	The Role of Light Harvesting Complex II and of the Minor Chlorophyll a/b Proteins in the Organization of the Photosystem II Antenna System. , 1990, , 1169-1176.		2

#	Article	IF	CITATIONS
289	Properties of the Minor Chlorophyll a/b Proteins CP29, CP26 and CP24 from Zea mays Photosystem II Membranes. , 1990, , 1209-1212.		2
290	Two-dimensional crystals of the photosystem II reaction center complex from higher plants. European Journal of Cell Biology, 1989, 50, 84-93.	3.6	52
291	Characterisation of stroma membranes from Zea mays L. chloroplasts. Carlsberg Research Communications, 1988, 53, 221-232.	1.8	21
292	Probing in vitro translation products with monoclonal antibodies to chlorophylla/b-binding proteins of barley thylakoids. Carlsberg Research Communications, 1988, 53, 297-308.	1.8	3
293	Immunological characterization of chlorophyll a/b-binding proteins of barley thylakoids. Planta, 1988, 173, 12-21.	3.2	57
294	Changes in the organization of stroma membranes induced by in vivo state 1-state 2 transition. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 935, 152-165.	1.0	69
295	Light-harvesting chlorophyll a/b proteins (LHCII) populations in phosphorylated membranes. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 936, 29-38.	1.0	80
296	Chlorophyll-protein complexes of barley photosystem I. FEBS Journal, 1987, 163, 221-230.	0.2	196
297	Light-Harvesting Chlorophyll-Proteins of Barley Photosystem I. , 1987, , 61-64.		2
298	The Organisation of Photosystem II Chlorophyll-Proteins. , 1987, , 81-88.		9
299	The Role of LHCII in Thylakoid Membranes. , 1987, , 277-280.		2
300	Chlorophyll-proteins of the photosystem II antenna system Journal of Biological Chemistry, 1987, 262, 1333-13341.	3.4	159
301	Cell-Specific Expression of LHCII and The Organisation of the Photosynthetic Reaction Centres in Chloroplast Thylakoids. , 1987, , 93-104.		Ο
302	Chlorophyll-proteins of the photosystem II antenna system. Journal of Biological Chemistry, 1987, 262, 13333-41.	3.4	121
303	Studies on the composition, structure and differentiation of fish egg chorion. Cell Biology International Reports, 1986, 10, 471.	0.6	3
304	Differential expression of LHCII genes in mesophyll and bundle sheath cells of maize. Carlsberg Research Communications, 1986, 51, 363-370.	1.8	35
305	Spectral properties and polypeptide composition of the chlorophyll-proteins from thylakoids of granal and agranal chloroplasts of maize (Zea mays L.). Carlsberg Research Communications, 1985, 50, 127-143.	1.8	37
306	Chlorophyll-proteins of two photosystem I preparations from maize. Carlsberg Research Communications, 1985, 50, 145-162.	1.8	97

#	Article	IF	CITATIONS
307	The role of the light harvesting complex and photosystem II in thylakoid stacking in thechlorina-f2 barley mutant. Carlsberg Research Communications, 1985, 50, 347-367.	1.8	54
308	Differences in chlorophyll-protein complexes and composition of polypeptides between thylakoids from bundle sheaths and mesophyll cells in maize. FEBS Journal, 1985, 146, 589-595.	0.2	63
309	Effect of growth conditions on carboxylating enzymes of Zea mays plants. Photosynthesis Research, 1982, 3, 53-58.	2.9	15
310	13 Finding the bottleneck: A research strategy for improved biomass production. , 0, , .		0
311	The intrusion of ecology into hydrology and morphodynamics. Rendiconti Lincei, 0, , 1.	2.2	0