Roberto Bassi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4378438/publications.pdf

Version: 2024-02-01

311 papers 22,512 citations

87 h-index 130 g-index

317 all docs

317 docs citations

317 times ranked

9394 citing authors

#	Article	IF	CITATIONS
1	Architecture of a Charge-Transfer State Regulating Light Harvesting in a Plant Antenna Protein. Science, 2008, 320, 794-797.	12.6	492
2	Regulation of Photosynthetic Light Harvesting Involves Intrathylakoid Lumen pH Sensing by the PsbS Protein. Journal of Biological Chemistry, 2004, 279, 22866-22874.	3.4	483
3	Carotenoid-binding proteins of photosystem II. FEBS Journal, 1993, 212, 297-303.	0.2	410
4	Zeaxanthin Has Enhanced Antioxidant Capacity with Respect to All Other Xanthophylls in Arabidopsis Leaves and Functions Independent of Binding to PSII Antennae. Plant Physiology, 2007, 145, 1506-1520.	4.8	355
5	Contrasting Behavior of Higher Plant Photosystem I and II Antenna Systems during Acclimation. Journal of Biological Chemistry, 2007, 282, 8947-8958.	3.4	269
6	Light-induced Dissociation of an Antenna Hetero-oligomer Is Needed for Non-photochemical Quenching Induction. Journal of Biological Chemistry, 2009, 284, 15255-15266.	3.4	268
7	Quantum Coherence Enabled Determination of the Energy Landscape in Light-Harvesting Complex II. Journal of Physical Chemistry B, 2009, 113, 16291-16295.	2.6	266
8	Analysis of LhcSR3, a Protein Essential for Feedback De-Excitation in the Green Alga Chlamydomonas reinhardtii. PLoS Biology, 2011, 9, e1000577.	5.6	260
9	Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivo under strong light. BMC Plant Biology, 2006, 6, 32.	3.6	232
10	Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 10056-10061.	7.1	224
11	A Mechanism of Nonphotochemical Energy Dissipation, Independent from PsbS, Revealed by a Conformational Change in the Antenna Protein CP26. Plant Cell, 2005, 17, 1217-1232.	6.6	224
12	Carotenoid-binding Sites of the Major Light-harvesting Complex II of Higher Plants. Journal of Biological Chemistry, 1999, 274, 29613-29623.	3.4	215
13	The Major Antenna Complex of Photosystem II Has a Xanthophyll Binding Site Not Involved in Light Harvesting. Journal of Biological Chemistry, 2001, 276, 35924-35933.	3.4	215
14	Time-Resolved Fluorescence Analysis of the Photosystem II Antenna Proteins in Detergent Micelles and Liposomesâ€. Biochemistry, 2001, 40, 12552-12561.	2.5	210
15	Carotenoid-to-Chlorophyll Energy Transfer in Recombinant Major Light-Harvesting Complex (LHCII) of Higher Plants. I. Femtosecond Transient Absorption Measurements. Biophysical Journal, 2001, 80, 901-915.	0.5	207
16	Chlorophyll Binding to Monomeric Light-harvesting Complex. Journal of Biological Chemistry, 1999, 274, 33510-33521.	3.4	204
17	Structure, function and regulation of plant photosystem I. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 335-352.	1.0	198
18	Chlorophyll-protein complexes of barley photosystem I. FEBS Journal, 1987, 163, 221-230.	0.2	196

#	Article	IF	Citations
19	Zeaxanthin Radical Cation Formation in Minor Light-harvesting Complexes of Higher Plant Antenna. Journal of Biological Chemistry, 2008, 283, 3550-3558.	3.4	193
20	Lateral redistribution of cytochrome b6/f complexes along thylakoid membranes upon state transitions Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 8262-8266.	7.1	191
21	Multiple Types of Association of Photosystem II and Its Light-Harvesting Antenna in Partially Solubilized Photosystem II Membranes. Biochemistry, 1999, 38, 2233-2239.	2.5	191
22	Chromophore Organization in the Higher-Plant Photosystem II Antenna Protein CP26. Biochemistry, 2002, 41, 7334-7343.	2.5	186
23	<i>Physcomitrella patens</i> i> mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11128-11133.	7.1	185
24	Lutein Accumulation in the Absence of Zeaxanthin Restores Nonphotochemical Quenching in the $\langle i \rangle$ Arabidopsis thaliana npq1 $\langle i \rangle$ Mutant Â. Plant Cell, 2009, 21, 1798-1812.	6.6	183
25	Acclimation of Chlamydomonas reinhardtii to Different Growth Irradiances. Journal of Biological Chemistry, 2012, 287, 5833-5847.	3.4	179
26	Minor Antenna Proteins CP24 and CP26 Affect the Interactions between Photosystem II Subunits and the Electron Transport Rate in Grana Membranes of <i>Arabidopsis</i> Å. Plant Cell, 2008, 20, 1012-1028.	6.6	178
27	Photoprotection in the Antenna Complexes of Photosystem II. Journal of Biological Chemistry, 2008, 283, 6184-6192.	3.4	177
28	Pathways of Energy Flow in LHCII from Two-Dimensional Electronic Spectroscopy. Journal of Physical Chemistry B, 2009, 113, 15352-15363.	2.6	175
29	A supramolecular light-harvesting complex from chloroplast photosystem-II membranes. FEBS Journal, 1992, 204, 317-326.	0.2	171
30	Excited State Equilibration in the Photosystem Iâ^'Light-Harvesting I Complex:  P700 Is Almost Isoenergetic with Its Antenna. Biochemistry, 1996, 35, 8572-8579.	2.5	169
31	Enhanced Photoprotection by Protein-Bound vs Free Xanthophyll Pools: A Comparative Analysis of Chlorophyll b and Xanthophyll Biosynthesis Mutants. Molecular Plant, 2010, 3, 576-593.	8.3	168
32	The Nature of a Chlorophyll Ligand in Lhca Proteins Determines the Far Red Fluorescence Emission Typical of Photosystem I. Journal of Biological Chemistry, 2003, 278, 49223-49229.	3.4	167
33	The Arabidopsis aba4-1 Mutant Reveals a Specific Function for Neoxanthin in Protection against Photooxidative Stress. Plant Cell, 2007, 19, 1048-1064.	6.6	166
34	Transcriptome Analysis of Cold Acclimation in Barley Albina and Xantha Mutants. Plant Physiology, 2006, 141, 257-270.	4.8	164
35	CHLOROPHYLL BINDING PROTEINS WITH ANTENNA FUNCTION IN HIGHER PLANTS and GREEN ALGAE. Photochemistry and Photobiology, 1990, 52, 1187-1206.	2.5	161
36	Chlorophyll-proteins of the photosystem II antenna system Journal of Biological Chemistry, 1987, 262, 13333-13341.	3.4	159

#	Article	IF	CITATIONS
37	Elucidation of the timescales and origins of quantum electronic coherence in LHCII. Nature Chemistry, 2012, 4, 389-395.	13.6	156
38	A nomenclature for the genes encoding the chlorophylla/b-binding proteins of higher plants. Plant Molecular Biology Reporter, 1992, 10, 242-253.	1.8	155
39	The Lhca antenna complexes of higher plants photosystem I. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1556, 29-40.	1.0	152
40	Molecular mechanisms involved in plant photoprotection. Biochemical Society Transactions, 2018, 46, 467-482.	3.4	151
41	Functional architecture of the major light-harvesting complex from higher plants. Journal of Molecular Biology, 2001, 314, 1157-1166.	4.2	150
42	Lhc proteins and the regulation of photosynthetic light harvesting function by xanthophylls., 2000, 64, 243-256.		149
43	Subunit stoichiometry of the chloroplast photosystem II antenna system and aggregation state of the component chlorophyll a/b binding proteins. Journal of Biological Chemistry, 1991, 266, 8136-8142.	3.4	149
44	Domestication of the green alga Chlorella sorokiniana: reduction of antenna size improves light-use efficiency in a photobioreactor. Biotechnology for Biofuels, 2014, 7, 157.	6.2	147
45	Analysis of the Chloroplast Protein Kinase Stt7 during State Transitions. PLoS Biology, 2009, 7, e1000045.	5 . 6	145
46	Evolution and functional properties of Photosystem II light harvesting complexes in eukaryotes. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 143-157.	1.0	144
47	A Structural Basis for the pH-Dependent Xanthophyll Cycle in <i>Arabidopsis thaliana</i> Â Â. Plant Cell, 2009, 21, 2036-2044.	6.6	142
48	<i>Arabidopsis</i> Mutants Deleted in the Light-Harvesting Protein Lhcb4 Have a Disrupted Photosystem II Macrostructure and Are Defective in Photoprotection. Plant Cell, 2011, 23, 2659-2679.	6.6	141
49	The Effect of Zeaxanthin as the Only Xanthophyll on the Structure and Function of the Photosynthetic Apparatus in Arabidopsis thaliana. Journal of Biological Chemistry, 2004, 279, 13878-13888.	3.4	140
50	Carotenoid S1 State in a Recombinant Light-Harvesting Complex of Photosystem II. Biochemistry, 2002, 41, 439-450.	2. 5	139
51	Biochemical Properties of the PsbS Subunit of Photosystem II Either Purified from Chloroplast or Recombinant. Journal of Biological Chemistry, 2002, 277, 22750-22758.	3.4	137
52	A Look within LHCII:  Differential Analysis of the Lhcb1â^'3 Complexes Building the Major Trimeric Antenna Complex of Higher-Plant Photosynthesis. Biochemistry, 2004, 43, 9467-9476.	2.5	134
53	Different Roles of \hat{l}_{\pm} - and \hat{l}^2 -Branch Xanthophylls in Photosystem Assembly and Photoprotection. Journal of Biological Chemistry, 2007, 282, 35056-35068.	3.4	133
54	Femtosecond Transient Absorption Study of Carotenoid to Chlorophyll Energy Transfer in the Light-Harvesting Complex II of Photosystem II. Biochemistry, 1997, 36, 281-287.	2.5	132

#	Article	IF	Citations
55	A zeaxanthin-independent nonphotochemical quenching mechanism localized in the photosystem II core complex. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12375-12380.	7.1	132
56	The Arabidopsis $\langle i \rangle szl1 \langle i \rangle$ Mutant Reveals a Critical Role of \hat{l}^2 -Carotene in Photosystem I Photoprotection \hat{A} \hat{A} . Plant Physiology, 2012, 159, 1745-1758.	4.8	131
57	The light stress-induced protein ELIP2 is a regulator of chlorophyll synthesis in Arabidopsis thaliana. Plant Journal, 2007, 50, 795-809.	5 . 7	128
58	Reconstitution and Pigment-Binding Properties of Recombinant CP29. FEBS Journal, 1996, 238, 112-120.	0.2	127
59	Regulation of plant light harvesting by thermal dissipation of excess energy. Biochemical Society Transactions, 2010, 38, 651-660.	3.4	126
60	Interactions between the Photosystem II Subunit PsbS and Xanthophylls Studied in Vivo and in Vitro. Journal of Biological Chemistry, 2008, 283, 8434-8445.	3.4	125
61	In Silico and Biochemical Analysis of Physcomitrella patens Photosynthetic Antenna: Identification of Subunits which Evolved upon Land Adaptation. PLoS ONE, 2008, 3, e2033.	2.5	121
62	Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes. Nature Plants, 2017, 3, 17033.	9.3	121
63	Chlorophyll-proteins of the photosystem II antenna system. Journal of Biological Chemistry, 1987, 262, 13333-41.	3.4	121
64	Zeaxanthin Protects Plant Photosynthesis by Modulating Chlorophyll Triplet Yield in Specific Light-harvesting Antenna Subunits. Journal of Biological Chemistry, 2012, 287, 41820-41834.	3.4	118
65	The neoxanthin binding site of the major light harvesting complex (LHCII) from higher plants. FEBS Letters, 1999, 456, 1-6.	2.8	117
66	Identification of chlorophyll-a/b proteins as substrates of transglutaminase activity in isolated chloroplasts of Helianthus tuberosus L Planta, 1994, 193, 283-289.	3.2	116
67	The <i>Physcomitrella patens</i> gene atlas project: largeâ€scale <scp>RNA</scp> â€seq based expression data. Plant Journal, 2018, 95, 168-182.	5.7	115
68	Subunit stoichiometry of the chloroplast photosystem II antenna system and aggregation state of the component chlorophyll a/b binding proteins. Journal of Biological Chemistry, 1991, 266, 8136-42.	3.4	115
69	Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photooxidative stress in <scp>A</scp> rabidopsis. Plant Journal, 2013, 76, 568-579.	5.7	114
70	The Interaction between Cold and Light Controls the Expression of the Cold-Regulated Barley Gene cor14b and the Accumulation of the Corresponding Protein1. Plant Physiology, 1999, 119, 671-680.	4.8	113
71	Xanthophyll Cycle Pigment Localization and Dynamics during Exposure to Low Temperatures and Light Stress in Vinca major 1. Plant Physiology, 1999, 120, 727-738.	4.8	109
72	The Chloroplast Gene ycf9 Encodes a Photosystem II (PSII) Core Subunit, PsbZ, That Participates in PSII Supramolecular Architecture. Plant Cell, 2001, 13, 1347-1368.	6.6	109

#	Article	IF	CITATIONS
73	Zeaxanthin Binds to Light-Harvesting Complex Stress-Related Protein to Enhance Nonphotochemical Quenching in <i>Physcomitrella patens</i>). Plant Cell, 2013, 25, 3519-3534.	6.6	109
74	Characterization of chlorophyll a/b proteins of photosystem I from Chlamydomonas reinhardtii Journal of Biological Chemistry, 1992, 267, 25714-25721.	3.4	107
75	A Post-translational Modification of the Photosystem II Subunit CP29 Protects Maize from Cold Stress. Journal of Biological Chemistry, 1995, 270, 8474-8481.	3.4	106
76	Multi-Level Light Capture Control in Plants and Green Algae. Trends in Plant Science, 2016, 21, 55-68.	8.8	103
77	Distribution of the chlorophyll spectral forms in the chlorophyll-protein complexes of photosystem II antenna. Biochemistry, 1993, 32, 3203-3210.	2.5	100
78	Three-dimensional structure of the higher-plant photosystem II reaction centre and evidence for its dimeric organization in vivo. FEBS Journal, 1994, 221, 307-315.	0.2	100
79	Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii. Journal of Biological Chemistry, 2016, 291, 7334-7346.	3.4	100
80	Chlorophyll-proteins of two photosystem I preparations from maize. Carlsberg Research Communications, 1985, 50, 145-162.	1.8	97
81	THE RESOLUTION OF CHLOROPHYLL <i>a/b</i> BINDING PROTEINS BY A PREPARATIVE METHOD BASED ON FLAT BED ISOELECTRIC FOCUSING. Photochemistry and Photobiology, 1990, 51, 693-703.	2.5	97
82	Mechanistic aspects of the xanthophyll dynamics in higher plant thylakoids. Physiologia Plantarum, 2003, 119, 347-354.	5.2	96
83	Effect of Antenna-Depletion in Photosystem II on Excitation Energy Transfer in Arabidopsis thaliana. Biophysical Journal, 2010, 98, 922-931.	0.5	96
84	Dynamics of Chromophore Binding to Lhc Proteins in Vivo and in Vitro during Operation of the Xanthophyll Cycle. Journal of Biological Chemistry, 2002, 277, 36913-36920.	3.4	95
85	Novel aspects of chlorophyll a/b-binding proteins. Physiologia Plantarum, 1997, 100, 769-779.	5.2	94
86	The Occurrence of the <i>psbS</i> Gene Product in <i>ChlamydomonasÂreinhardtii</i> and in Other Photosynthetic Organisms and Its Correlation with Energy Quenching ^{â€} . Photochemistry and Photobiology, 2008, 84, 1359-1370.	2.5	94
87	Sharing light between two photosystems: mechanism of state transitions. Current Opinion in Plant Biology, 2015, 25, 71-78.	7.1	94
88	Characterization of chlorophyll a/b proteins of photosystem I from Chlamydomonas reinhardtii. Journal of Biological Chemistry, 1992, 267, 25714-21.	3.4	94
89	Understanding the Changes in the Circular Dichroism of Light Harvesting Complex II upon Varying Its Pigment Composition and Organization. Biochemistry, 2007, 46, 4745-4754.	2.5	92
90	Recombinant Lhca2 and Lhca3 Subunits of the Photosystem I Antenna System. Biochemistry, 2003, 42, 4226-4234.	2.5	91

#	Article	IF	Citations
91	Higher plants light harvesting proteins. Structure and function as revealed by mutation analysis of either protein or chromophore moieties. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1365, 207-214.	1.0	90
92	Dissipation of Light Energy Absorbed in Excess: The Molecular Mechanisms. Annual Review of Plant Biology, 2021, 72, 47-76.	18.7	90
93	The Soret absorption properties of carotenoids and chlorophylls in antenna complexes of higher plants. Photosynthesis Research, 2000, 64, 221-231.	2.9	88
94	Trap-Limited Charge Separation Kinetics in Higher Plant Photosystem I Complexes. Biophysical Journal, 2008, 94, 3601-3612.	0.5	88
95	Reactive oxygen species and transcript analysis upon excess light treatment in wild-type Arabidopsis thaliana vs a photosensitive mutant lacking zeaxanthin and lutein. BMC Plant Biology, 2011, 11, 62.	3.6	88
96	Antenna size reduction as a strategy to increase biomass productivity: a great potential not yet realized. Journal of Applied Phycology, 2015, 27, 1063-1077.	2.8	88
97	Photoprotection in higher plants: The putative quenching site is conserved in all outer light-harvesting complexes of Photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 1263-1267.	1.0	85
98	Regulation of the pigment optical density of an algal cell: Filling the gap between photosynthetic productivity in the laboratory and in mass culture. Journal of Biotechnology, 2012, 162, 115-123.	3.8	83
99	Non-photochemical quenching and xanthophyll cycle activities in six green algal species suggest mechanistic differences in the process of excess energy dissipation. Journal of Plant Physiology, 2015, 172, 92-103.	3.5	82
100	Nonphotochemical Quenching of Chlorophyll Fluorescence inChlamydomonas reinhardtii. Biochemistry, 2006, 45, 1490-1498.	2.5	81
101	LHCBM1 and LHCBM2/7 Polypeptides, Components of Major LHCII Complex, Have Distinct Functional Roles in Photosynthetic Antenna System of Chlamydomonas reinhardtii. Journal of Biological Chemistry, 2012, 287, 16276-16288.	3.4	81
102	Light-harvesting chlorophyll a/b proteins (LHCII) populations in phosphorylated membranes. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 936, 29-38.	1.0	80
103	Nearest-neighbor analysis of a Photosystem II complex from Marchantia polymorpha L. (liverwort), which contains reaction center and antenna proteins. FEBS Journal, 1998, 255, 196-205.	0.2	79
104	Single-molecule spectroscopy of LHCSR1 protein dynamics identifies two distinct states responsible for multi-timescale photosynthetic photoprotection. Nature Chemistry, 2017, 9, 772-778.	13.6	79
105	Heterogenous lipid distribution among chlorophyll-binding proteins of photosystem II in maize mesophyll chloroplasts. FEBS Journal, 1994, 221, 721-730.	0.2	77
106	Mutation Analysis of Lhca1 Antenna Complex. Journal of Biological Chemistry, 2002, 277, 36253-36261.	3.4	77
107	Analysis of Some Optical Properties of a Native and Reconstituted Photosystem II Antenna Complex, CP29:  Pigment Binding Sites Can Be Occupied by Chlorophyll a or Chlorophyll b and Determine Spectral Forms. Biochemistry, 1997, 36, 12984-12993.	2.5	76
108	Role of PSBS and LHCSR in <i>Physcomitrella patens</i> acclimation to high light and low temperature. Plant, Cell and Environment, 2011, 34, 922-932.	5.7	76

#	Article	IF	CITATIONS
109	Slowly reversible de-epoxidation of lutein-epoxide in deep shade leaves of a tropical tree legume may 'lock-in' lutein-based photoprotection during acclimation to strong light. Journal of Experimental Botany, 2004, 56, 461-468.	4.8	75
110	A single point mutation (E166Q) prevents dicyclohexylcarbodiimide binding to the photosystem II subunit CP29. FEBS Letters, 1997, 402, 151-156.	2.8	74
111	Observation of dissipative chlorophyll-to-carotenoid energy transfer in light-harvesting complex II in membrane nanodiscs. Nature Communications, 2020, 11, 1295.	12.8	74
112	A specific binding site for neoxanthin in the monomeric antenna proteins CP26 and CP29 of Photosystem II. FEBS Letters, 2007, 581, 4704-4710.	2.8	73
113	Regulation of photosystem I light harvesting by zeaxanthin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2431-8.	7.1	73
114	Lutein Can Act as a Switchable Charge Transfer Quencher in the CP26 Light-harvesting Complex. Journal of Biological Chemistry, 2009, 284, 2830-2835.	3.4	72
115	Potential and Challenges of Improving Photosynthesis in Algae. Plants, 2020, 9, 67.	3 . 5	72
116	Changes in the organization of stroma membranes induced by in vivo state 1-state 2 transition. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 935, 152-165.	1.0	69
117	Red Spectral Forms of Chlorophylls in Green Plant PSIâ ^{**} A Site-Selective and High-Pressure Spectroscopy Study+. Journal of Physical Chemistry B, 2003, 107, 9086-9093.	2.6	69
118	Photosynthetic Antenna Size in Higher Plants Is Controlled by the Plastoquinone Redox State at the Post-transcriptional Rather than Transcriptional Level. Journal of Biological Chemistry, 2007, 282, 29457-29469.	3.4	69
119	Chlorophyll Triplet Quenching and Photoprotection in the Higher Plant Monomeric Antenna Protein Lhcb5. Journal of Physical Chemistry B, 2013, 117, 11337-11348.	2.6	68
120	Identification and characterization of the major components of the Oncorhynchus mykiss Egg Chorion. Molecular Reproduction and Development, 1991, 28, 85-93.	2.0	67
121	Gaussian Decomposition of Absorption and Linear Dichroism Spectra of Outer Antenna Complexes of Photosystem II. Biochemistry, 1994, 33, 8982-8990.	2.5	66
122	Conformational Changes Induced by Phosphorylation in the CP29 Subunit of Photosystem IIâ€,‡. Biochemistry, 1996, 35, 11142-11148.	2.5	66
123	Time-resolved fluorescence analysis of the recombinant photosystem II antenna complex CP29. FEBS Journal, 2001, 268, 260-267.	0.2	66
124	Improper excess light energy dissipation in Arabidopsis results in a metabolic reprogramming. BMC Plant Biology, 2009, 9, 12.	3.6	66
125	Biogenesis of light harvesting proteins. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 861-871.	1.0	66
126	LHCSR3 is a nonphotochemical quencher of both photosystems in <i>Chlamydomonas reinhardtii</i> Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4212-4217.	7.1	66

#	Article	IF	CITATIONS
127	The chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtii. Planta, 1991, 183, 423-33.	3.2	65
128	In VitroReconstitution of the Recombinant Photosystem II Light-harvesting Complex CP24 and Its Spectroscopic Characterization. Journal of Biological Chemistry, 1998, 273, 17154-17165.	3.4	65
129	Evidence for Two Spectroscopically Different Dimers of Light-Harvesting Complex I from Green Plantsâ€. Biochemistry, 2000, 39, 8625-8631.	2.5	65
130	Differential accumulation of Lhcbgene products in thylakoid membranes of Zea maysplants grown under contrasting light and temperature conditions. Proteomics, 2005, 5, 758-768.	2.2	65
131	The Low-Energy Forms of Photosystem I Light-Harvesting Complexes: Spectroscopic Properties and Pigment-Pigment Interaction Characteristics. Biophysical Journal, 2007, 93, 2418-2428.	0.5	65
132	Mutagenesis and phenotypic selection as a strategy toward domestication of Chlamydomonas reinhardtii strains for improved performance in photobioreactors. Photosynthesis Research, 2011, 108, 107-120.	2.9	65
133	The Chloroplast Gene <i>ycf9</i> Encodes a Photosystem II (PSII) Core Subunit, PsbZ, That Participates in PSII Supramolecular Architecture. Plant Cell, 2001, 13, 1347-1368.	6.6	65
134	Elucidation of the \hat{l}^2 -carotene hydroxylation pathway in Arabidopsis thaliana. FEBS Letters, 2006, 580, 4718-4722.	2.8	64
135	Light-Harvesting Complex Protein LHCBM9 Is Critical for Photosystem II Activity and Hydrogen Production in <i>Chlamydomonas reinhardtii</i> Â Â. Plant Cell, 2014, 26, 1598-1611.	6.6	64
136	Differences in chlorophyll-protein complexes and composition of polypeptides between thylakoids from bundle sheaths and mesophyll cells in maize. FEBS Journal, 1985, 146, 589-595.	0.2	63
137	Pigment-Pigment Interactions in Lhca4 Antenna Complex of Higher Plants Photosystem I. Journal of Biological Chemistry, 2005, 280, 20612-20619.	3.4	63
138	cor Gene Expression in Barley Mutants Affected in Chloroplast Development and Photosynthetic Electron Transport. Plant Physiology, 2003, 131, 793-802.	4.8	62
139	Spectroscopic elucidation of uncoupled transition energies in the major photosynthetic light-harvesting complex, LHCII. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13276-13281.	7.1	62
140	Coexistence of plant and algal energy dissipation mechanisms in the moss <i>Physcomitrella patens</i> . New Phytologist, 2012, 196, 763-773.	7.3	61
141	Immunological studies on chlorophyll-a/b proteins and their distribution in thylakoid membrane domains. Planta, 1990, 181, 275-286.	3.2	60
142	Short- and Long-Term Operation of the Lutein-Epoxide Cycle in Light-Harvesting Antenna Complexes. Plant Physiology, 2007, 144, 926-941.	4.8	59
143	Mutation Analysis of Violaxanthin De-epoxidase Identifies Substrate-binding Sites and Residues Involved in Catalysis. Journal of Biological Chemistry, 2010, 285, 23763-23770.	3.4	59
144	Suborganellar localisation and effect of light on Helianthus tuberosus chloroplast transglutaminases and their substrates. Planta, 2003, 217, 84-95.	3.2	58

#	Article	IF	Citations
145	Carotenoid to chlorophyll energy transfer in light harvesting complex II from Arabidopsis thaliana probed by femtosecond fluorescence upconversion. Chemical Physics Letters, 2003, 379, 305-313.	2.6	58
146	A Zea mays 39-kDa thylakoid transglutaminase catalyses the modification by polyamines of light-harvesting complexi;½½II in a light-dependent way. Planta, 2004, 219, 754-64.	3.2	58
147	Biochemical and structural analyses of a higher plant photosystem II supercomplex of a photosystem I-less mutant of barley. FEBS Journal, 2006, 273, 4616-4630.	4.7	58
148	Functional analysis of Photosystem I light-harvesting complexes (Lhca) gene products of Chlamydomonas reinhardtii. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 212-221.	1.0	58
149	Immunological characterization of chlorophyll a/b-binding proteins of barley thylakoids. Planta, 1988, 173, 12-21.	3.2	57
150	Carotenoids: Localization and Function. , 1996, , 539-563.		57
151	LHC-like proteins involved in stress responses and biogenesis/repair of the photosynthetic apparatus. Biochemical Journal, 2019, 476, 581-593.	3.7	57
152	Energy Transfer among CP29 Chlorophylls: Calculated Förster Rates and Experimental Transient Absorption at Room Temperature. Biophysical Journal, 2000, 79, 1706-1717.	0.5	55
153	The role of the light harvesting complex and photosystem II in thylakoid stacking in thechlorina-f2 barley mutant. Carlsberg Research Communications, 1985, 50, 347-367.	1.8	54
154	Occurrence of the lutein-epoxide cycle in mistletoes of the Loranthaceae and Viscaceae. Planta, 2003, 217, 868-879.	3.2	54
155	Energy Transfer Pathways in the Minor Antenna Complex CP29 of Photosystem II: A Femtosecond Study of Carotenoid to Chlorophyll Transfer on Mutant and WT Complexes. Biophysical Journal, 2003, 84, 2517-2532.	0.5	54
156	Post-transcriptional control of light-harvesting genes expression under light stress. Plant Molecular Biology, 2013, 82, 147-154.	3.9	54
157	Light-Harvesting Complex Stress-Related Proteins Catalyze Excess Energy Dissipation in Both Photosystems of <i>Physcomitrella patens</i> Plant Cell, 2015, 27, 3213-3227.	6.6	54
158	Enhancement of Non-Photochemical Quenching in the Bryophyte Physcomitrella patens During Acclimation to Salt and Osmotic Stress. Plant and Cell Physiology, 2012, 53, 1815-1825.	3.1	53
159	Orientation of Chlorophyll Transition Moments in the Higher-Plant Light-Harvesting Complex CP29. Biochemistry, 1999, 38, 12974-12983.	2.5	52
160	Retrograde Signaling and Photoprotection in a gun4 Mutant of Chlamydomonas reinhardtii. Molecular Plant, 2012, 5, 1242-1262.	8.3	52
161	Two-dimensional crystals of the photosystem II reaction center complex from higher plants. European Journal of Cell Biology, 1989, 50, 84-93.	3.6	52
162	Electron transfer between carotenoid and chlorophyll contributes to quenching in the LHCSR1 protein from Physcomitrella patens. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1870-1878.	1.0	51

#	Article	IF	CITATIONS
163	Observation of Electronic Excitation Transfer Through Light Harvesting Complex II Using Two-Dimensional Electronic–Vibrational Spectroscopy. Journal of Physical Chemistry Letters, 2016, 7, 4197-4206.	4.6	51
164	Quenching in Arabidopsis thaliana Mutants Lacking Monomeric Antenna Proteins of Photosystem II. Journal of Biological Chemistry, 2011, 286, 36830-36840.	3.4	50
165	The Electronic Structure of Lutein 2 Is Optimized for Light Harvesting in Plants. CheM, 2019, 5, 575-584.	11.7	50
166	Absorption spectra of chlorophyll a and b in Lhcb protein environment. Photosynthesis Research, 2000, 64, 233-242.	2.9	49
167	Excitation Energy Transfer in Dimeric Light Harvesting Complex I:Â A Combined Streak-Camera/Fluorescence Upconversion Study. Journal of Physical Chemistry B, 2001, 105, 10132-10139.	2.6	49
168	Photochemical Behavior of Xanthophylls in the Recombinant Photosystem II Antenna Complex, CP26â€. Biochemistry, 2001, 40, 1220-1225.	2.5	49
169	The Calculated In Vitro and In Vivo Chlorophyll a Absorption Bandshape. Biophysical Journal, 2002, 82, 378-390.	0.5	49
170	Quenching of Chlorophyll Triplet States by Carotenoids in Reconstituted Lhca4 Subunit of Peripheral Light-Harvesting Complex of Photosystem I. Biochemistry, 2005, 44, 8337-8346.	2.5	49
171	Magnetic Nanoparticles from Magnetospirillum gryphiswaldense Increase the Efficacy of Thermotherapy in a Model of Colon Carcinoma. PLoS ONE, 2014, 9, e108959.	2.5	49
172	On the origin of a slowly reversible fluorescence decay component in the <i>Arabidopsis npq4</i> mutant. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130221.	4.0	49
173	Biochemical and Functional Properties of Photosystem II in Agranal Membranes from Maize Mesophyll and Bundle Sheath Chloroplasts. FEBS Journal, 1995, 233, 709-719.	0.2	48
174	Cold-Resistant and Cold-Sensitive Maize Lines Differ in the Phosphorylation of the Photosystem II Subunit, CP29. Plant Physiology, 1997, 115, 171-180.	4.8	48
175	Effects of a non-ionic detergent on the spectral properties and aggregation state of the light-harvesting chlorophyll a/b protein complex (LHCII). Journal of Photochemistry and Photobiology B: Biology, 1991, 9, 335-353.	3.8	47
176	Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3848-3853.	7.1	47
177	A CK2 site is reversibly phosphorylated in the photosystem II subunit CP29. FEBS Letters, 1996, 399, 245-250.	2.8	46
178	Role of Xanthophylls in Light Harvesting in Green Plants: A Spectroscopic Investigation of Mutant LHCII and Lhcb Pigment–Protein Complexes. Journal of Physical Chemistry B, 2012, 116, 3834-3849.	2.6	46
179	Dynamic Changes between Two LHCX-Related Energy Quenching Sites Control Diatom Photoacclimation. Plant Physiology, 2018, 177, 953-965.	4.8	46
180	Chlorophyll b to Chlorophyll a Energy Transfer Kinetics in the CP29 Antenna Complex: A Comparative Femtosecond Absorption Study between Native and Reconstituted Proteins. Biophysical Journal, 2003, 84, 2508-2516.	0.5	44

#	Article	IF	CITATIONS
181	Dynamics of zeaxanthin binding to the photosystem II monomeric antenna protein Lhcb6 (CP24) and modulation of its photoprotection properties. Archives of Biochemistry and Biophysics, 2010, 504, 67-77.	3.0	43
182	Long-term acclimatory response to excess excitation energy: evidence for a role of hydrogen peroxide in the regulation of photosystem II antenna size. Journal of Experimental Botany, 2015, 66, 7151-7164.	4.8	43
183	Optimized Cas9 expression systems for highly efficient Arabidopsis genome editing facilitate isolation of complex alleles in a single generation. Functional and Integrative Genomics, 2020, 20, 151-162.	3.5	43
184	Probing the structure of Lhca3 by mutation analysis. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1607-1613.	1.0	42
185	The photosystem II subunit CP29 can be phosphorylated in both C3 and C4 plants as suggested by sequence analysis. Plant Molecular Biology, 1998, 36, 11-22.	3.9	41
186	Singlet and Triplet State Transitions of Carotenoids in the Antenna Complexes of Higher-Plant Photosystem Iâ€. Biochemistry, 2007, 46, 3846-3855.	2.5	41
187	Combined resistance to oxidative stress and reduced antenna size enhance light-to-biomass conversion efficiency in Chlorella vulgaris cultures. Biotechnology for Biofuels, 2019, 12, 221.	6.2	41
188	Origin of the 701-nm Fluorescence Emission of the Lhca2 Subunit of Higher Plant Photosystem I. Journal of Biological Chemistry, 2004, 279, 48543-48549.	3.4	39
189	The Association of the Antenna System to Photosystem I in Higher Plants. Journal of Biological Chemistry, 2005, 280, 31050-31058.	3.4	38
190	Occupancy and Functional Architecture of the Pigment Binding Sites of Photosystem II Antenna Complex Lhcb5. Journal of Biological Chemistry, 2009, 284, 8103-8113.	3.4	38
191	Spectral properties and polypeptide composition of the chlorophyll-proteins from thylakoids of granal and agranal chloroplasts of maize (Zea mays L.). Carlsberg Research Communications, 1985, 50, 127-143.	1.8	37
192	The Relationship between the Binding of Dicyclohexylcarbodiimide and Quenching of Chlorophyll Fluorescence in the Light-Harvesting Proteins of Photosystem IIâ€. Biochemistry, 1998, 37, 11586-11591.	2.5	36
193	High Light-Dependent Phosphorylation of Photosystem II Inner Antenna CP29 in Monocots Is STN7 Independent and Enhances Nonphotochemical Quenching. Plant Physiology, 2015, 167, 457-471.	4.8	36
194	Differential expression of LHCII genes in mesophyll and bundle sheath cells of maize. Carlsberg Research Communications, 1986, 51, 363-370.	1.8	35
195	Identification of the Chromophores Involved in Aggregation-dependent Energy Quenching of the Monomeric Photosystem II Antenna Protein Lhcb5. Journal of Biological Chemistry, 2010, 285, 28309-28321.	3.4	34
196	The <i>Arabidopsis nox</i> Mutant Lacking Carotene Hydroxylase Activity Reveals a Critical Role for Xanthophylls in Photosystem I Biogenesis A. Plant Cell, 2013, 25, 591-608.	6.6	34
197	Characterization of magnetic nanoparticles from <i>Magnetospirillum Gryphiswaldense</i> as potential theranostics tools. Contrast Media and Molecular Imaging, 2016, 11, 139-145.	0.8	34
198	Excitation Decay Pathways of Lhca Proteins:Â A Time-Resolved Fluorescence Study. Journal of Physical Chemistry B, 2005, 109, 21150-21158.	2.6	33

#	Article	IF	CITATIONS
199	Investigating energy partitioning during photosynthesis using an expanded quantum yield convention. Chemical Physics, 2009, 357, 151-158.	1.9	33
200	A quadruple mutant of Arabidopsis reveals a \hat{l}^2 -carotene hydroxylation activity for LUT1/CYP97C1 and a regulatory role of xanthophylls on determination of the PSI/PSII ratio. BMC Plant Biology, 2012, 12, 50.	3.6	33
201	A LHCB9-dependent photosystem I megacomplex induced under low light in Physcomitrella patens. Nature Plants, 2018, 4, 910-919.	9.3	32
202	Xanthophyll Binding Sites of the CP29 (Lhcb4) Subunit of Higher Plant Photosystem II Investigated by Domain Swapping and Mutation Analysis. Journal of Biological Chemistry, 2003, 278, 19190-19198.	3.4	31
203	The function of LHCBM4/6/8 antenna proteins inChlamydomonas reinhardtii. Journal of Experimental Botany, 2016, 68, erw462.	4.8	31
204	Magnetosomes Extracted from <i>Magnetospirillum gryphiswaldense</i> as Theranostic Agents in an Experimental Model of Glioblastoma. Contrast Media and Molecular Imaging, 2018, 2018, 1-12.	0.8	31
205	A study of Photosystem II fluorescence emission in terms of the antenna chlorophyll-protein complexes. Biochimica Et Biophysica Acta - Bioenergetics, 1993, 1183, 194-200.	1.0	30
206	Microsecond and millisecond dynamics in the photosynthetic protein LHCSR1 observed by single-molecule correlation spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11247-11252.	7.1	30
207	Pigment-binding properties of the recombinant photosystem II subunit CP26 reconstituted in vitro. FEBS Journal, 1998, 253, 653-658.	0.2	29
208	A Red-shifted Antenna Protein Associated with Photosystem II in Physcomitrella patens. Journal of Biological Chemistry, 2011, 286, 28978-28987.	3.4	28
209	Integration of Carbon Assimilation Modes with Photosynthetic Light Capture in the Green Alga Chlamydomonas reinhardtii. Molecular Plant, 2014, 7, 1545-1559.	8.3	27
210	Exploring the potential of microalgae in the recycling of dairy wastes. Bioresource Technology Reports, 2020, 12, 100604.	2.7	27
211	lonic permeability of the mitochondrial outer membrane. European Biophysics Journal, 1992, 20, 311-9.	2.2	26
212	Calcium Binding to the Photosystem II Subunit CP29. Journal of Biological Chemistry, 2000, 275, 12781-12788.	3.4	26
213	Regenerative Therapies for Diabetic Microangiopathy. Experimental Diabetes Research, 2012, 2012, 1-11.	3.8	26
214	Biogenesis of photosynthetic complexes in the chloroplast of <i><scp>C</scp>hlamydomonas reinhardtii</i> requires <scp>ARSA</scp> 1, a homolog of prokaryotic arsenite transporter and eukaryotic <scp>TRC</scp> 40 for guided entry of tailâ€anchored proteins. Plant Journal, 2013, 73, 850-861.	5.7	26
215	Heterologous Expression of Moss Light-harvesting Complex Stress-related 1 (LHCSR1), the Chlorophyll a-Xanthophyll Pigment-protein Complex Catalyzing Non-photochemical Quenching, in Nicotiana sp Journal of Biological Chemistry, 2015, 290, 24340-24354.	3.4	26
216	A systems-wide understanding of photosynthetic acclimation in algae and higher plants. Journal of Experimental Botany, 2017, 68, 2667-2681.	4.8	26

#	Article	IF	Citations
217	Snapshot Transient Absorption Spectroscopy of Carotenoid Radical Cations in High-Light-Acclimating Thylakoid Membranes. Journal of Physical Chemistry Letters, 2017, 8, 5548-5554.	4.6	26
218	Chlorophyll-proteins from maize seedlings grown under intermittent light conditions. Planta, 1993, 191, 265.	3.2	25
219	An NMR comparison of the light-harvesting complex II (LHCII) in active and photoprotective states reveals subtle changes in the chlorophyll a ground-state electronic structures. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 738-744.	1.0	25
220	Antenna structure and energy transfer in higher plant photosystems. Topics in Current Chemistry, 1996, , 147-181.	4.0	25
221	Kinetic Modeling of Charge-Transfer Quenching in the CP29 Minor Complex. Journal of Physical Chemistry B, 2008, 112, 13418-13423.	2.6	24
222	Effects of altered <i>î±</i> à€•and <i>î²</i> à6€branch carotenoid biosynthesis on photoprotection and wholeâ€plant acclimation of <i>Arabidopsis</i> to photoâ€oxidative stress. Plant, Cell and Environment, 2013, 36, 438-453.	5.7	24
223	Design of a highly thermostable hemicellulose-degrading blend from Thermotoga neapolitana for the treatment of lignocellulosic biomass. Journal of Biotechnology, 2019, 296, 42-52.	3.8	24
224	The <scp>STN</scp> 8 kinaseâ€ <scp>PBCP</scp> phosphatase system is responsible for highâ€lightâ€induced reversible phosphorylation of the <scp>PSII</scp> inner antenna subunit <scp>CP</scp> 29 in rice. Plant Journal, 2017, 89, 681-691.	5.7	23
225	Excitation Energy Transfer Pathways in Lhca4. Biophysical Journal, 2005, 88, 1959-1969.	0.5	22
226	Cell Synchronization Enhances Nuclear Transformation and Genome Editing <i>via</i> Cas9 Enabling Homologous Recombination in <i>Chlamydomonas reinhardtii</i> ACS Synthetic Biology, 2020, 9, 2840-2850.	3.8	22
227	Characterisation of stroma membranes from Zea mays L. chloroplasts. Carlsberg Research Communications, 1988, 53, 221-232.	1.8	21
228	Genetic analysis of the expression of the cold-regulated gene cor14b: a way toward the identification of components of the cold response signal transduction in Triticeae. Canadian Journal of Botany, 2003, 81, 1162-1167.	1.1	21
229	A Light Harvesting Complex-Like Protein in Maintenance of Photosynthetic Components in Chlamydomonas. Plant Physiology, 2017, 174, 2419-2433.	4.8	21
230	Functional modulation of LHCSR1 protein from Physcomitrella patens by zeaxanthin binding and low pH. Scientific Reports, 2017, 7, 11158.	3.3	21
231	Identification of a pigment cluster catalysing fast photoprotective quenching response in CP29. Nature Plants, 2020, 6, 303-313.	9.3	21
232	LHCII can substitute for LHCI as an antenna for photosystem I but with reduced light-harvesting capacity. Nature Plants, 2016, 2, 16131.	9.3	20
233	A Stepanov relation analysis of steady-state absorption and fluorescence spectra in the isolated D1/D2/cytochrome b-559 complex. Biochimica Et Biophysica Acta - Bioenergetics, 1995, 1229, 59-63.	1.0	19
234	Title is missing!. Photosynthesis Research, 1999, 61, 281-290.	2.9	19

#	Article	IF	Citations
235	Supramolecular assembly of chloroplast NADH dehydrogenase-like complex with photosystem I from Arabidopsis thaliana. Molecular Plant, 2022, 15, 454-467.	8.3	19
236	Purification of structurally intact grana from plants thylakoids membranes. Journal of Bioenergetics and Biomembranes, 2010, 42, 37-45.	2.3	18
237	Enhance knowledge on sustainable use of plant protection products within the framework of the Sustainable Use Directive. Pest Management Science, 2013, 69, 883-888.	3.4	18
238	Parallel pigment and transcriptomic analysis of four barley Albina and Xantha mutants reveals the complex network of the chloroplast-dependent metabolism. Plant Molecular Biology, 2009, 71, 173-191.	3.9	17
239	Plants with less chlorophyll: A global change perspective. Global Change Biology, 2021, 27, 959-967.	9.5	17
240	Protein–Protein Interactions Induce pH-Dependent and Zeaxanthin-Independent Photoprotection in the Plant Light-Harvesting Complex, LHCII. Journal of the American Chemical Society, 2021, 143, 17577-17586.	13.7	17
241	Loss of LHCI system affects LHCII re-distribution between thylakoid domains upon state transitions. Photosynthesis Research, 2018, 135, 251-261.	2.9	16
242	High Carotenoid Mutants of Chlorella vulgaris Show Enhanced Biomass Yield under High Irradiance. Plants, 2021, 10, 911.	3.5	16
243	Effect of growth conditions on carboxylating enzymes of Zea mays plants. Photosynthesis Research, 1982, 3, 53-58.	2.9	15
244	First solid-state NMR analysis of uniformly 13C-enriched major light-harvesting complexes from Chlamydomonas reinhardtii and identification of protein and cofactor spin clusters. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 437-443.	1.0	15
245	Novel aspects of chlorophyll a/b-binding proteins. Physiologia Plantarum, 1997, 100, 769-779.	5 . 2	14
246	Harnessing the Algal Chloroplast for Heterologous Protein Production. Microorganisms, 2022, 10, 743.	3.6	14
247	A kaleidoscope of photosynthetic antenna proteins and their emerging roles. Plant Physiology, 2022, 189, 1204-1219.	4.8	14
248	A Phosphite Dehydrogenase Variant with Promiscuous Access to Nicotinamide Cofactor Pools Sustains Fast Phosphite-Dependent Growth of Transplastomic Chlamydomonas reinhardtii. Plants, 2020, 9, 473.	3.5	13
249	Formate binding near the redox-active TyrosineD in Photosystem II: consequences on the properties of TyrD. Photosynthesis Research, 2005, 84, 139-144.	2.9	12
250	Stark effect measurements on monomers and trimers of reconstituted light-harvesting complex II of plants. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1656, 177-188.	1.0	11
251	Monomeric light harvesting complexes enhance excitation energy transfer from LHCII to PSII and control their lateral spacing in thylakoids. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148035.	1.0	11
252	Photoprotective Mechanisms: Carotenoids. , 2014, , 393-435.		11

#	Article	IF	Citations
253	Biochemistry and Molecular Biology of Pigment Binding Proteins. , 1996, , 41-63.		10
254	A Structural Investigation of the Central ChlorophyllaBinding Sites in the Minor Photosystem II Antenna Protein,Lhcb4â€. Biochemistry, 2002, 41, 2305-2310.	2.5	10
255	A microalgalâ€based preparation with synergistic cellulolytic and detoxifying action towards chemicalâ€treated lignocellulose. Plant Biotechnology Journal, 2021, 19, 124-137.	8.3	10
256	Effect of lhcsr gene dosage on oxidative stress and light use efficiency by Chlamydomonas reinhardtii cultures. Journal of Biotechnology, 2021, 328, 12-22.	3.8	10
257	The relation between the minor chlorophyll spectral forms and fluorescence quenching in aggregated light harvesting chlorophyll ab complex II. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1184, 279-283.	1.0	9
258	The low energy emitting states of the Lhca4 subunit of higher plant photosystem I. FEBS Letters, 2005, 579, 2071-2076.	2.8	9
259	Photosynthesis research in Italy: a review. Photosynthesis Research, 2006, 88, 211-240.	2.9	9
260	Assembly of Light Harvesting Pigment-Protein Complexes in Photosynthetic Eukaryotes. Advances in Photosynthesis and Respiration, 2012, , $113-126$.	1.0	9
261	The Organisation of Photosystem II Chlorophyll-Proteins. , 1987, , 81-88.		9
262	Studies on the Herbicide Binding Site in Isolated Photosystem II Core Complexes from a Flat-Bed Isoelectrofocusing Method. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1990, 45, 366-372.	1.4	8
263	Pigment conformation and pigment-protein interactions in the reconstituted Lhcb4 antenna protein. FEBS Letters, 2001, 492, 54-57.	2.8	8
264	The role of light-harvesting complex I in excitation energy transfer from LHCII to photosystem I in Arabidopsis. Plant Physiology, 2022, 188, 2241-2252.	4.8	8
265	Assessing photoprotective functions of carotenoids in photosynthetic systems of plants and green algae. Methods in Enzymology, 2022, , 53-84.	1.0	8
266	Multiple light-harvesting II polypeptides from maize mesophyll chloroplasts are distinct gene products. Journal of Photochemistry and Photobiology B: Biology, 1999, 49, 50-60.	3.8	7
267	Functional analysis of LHCSR1, a protein catalyzing NPQ in mosses, by heterologous expression in Arabidopsis thaliana. Photosynthesis Research, 2019, 142, 249-264.	2.9	7
268	LHCI: The Antenna Complex of Photosystem I in Plants and Green Algae. , 2006, , 119-137.		7
269	Violaxanthin and Zeaxanthin May Replace Lutein at the L1 Site of LHCII, Conserving the Interactions with Surrounding Chlorophylls and the Capability of Triplet–Triplet Energy Transfer. International Journal of Molecular Sciences, 2022, 23, 4812.	4.1	7
270	Molecular mechanisms of light harvesting in the minor antenna CP29 in near-native membrane lipidic environment. Journal of Chemical Physics, 2022, 156, .	3.0	7

#	Article	IF	Citations
271	Light-harvesting complex stress-related proteins play crucial roles in the acclimation of Physcomitrella patens under fluctuating light conditions. Photosynthesis Research, 2021, , 1.	2.9	6
272	A chimeric hydrolase-PTXD transgene enables chloroplast-based heterologous protein expression and non-sterile cultivation of Chlamydomonas reinhardtii. Algal Research, 2021, 59, 102429.	4.6	6
273	Light harvesting complex I is essential for Photosystem II photoprotection under variable light conditions in Arabidopsis thaliana. Environmental and Experimental Botany, 2018, 154, 89-98.	4.2	4
274	Chlorophyll-Xanthophyll Antenna Complexes: In Between Light Harvesting and Energy Dissipation. Advances in Photosynthesis and Respiration, 2020, , 27-55.	1.0	4
275	Studies on the composition, structure and differentiation of fish egg chorion. Cell Biology International Reports, 1986, 10, 471.	0.6	3
276	Probing in vitro translation products with monoclonal antibodies to chlorophylla/b-binding proteins of barley thylakoids. Carlsberg Research Communications, 1988, 53, 297-308.	1.8	3
277	Reorganization of Thylakoid Membrane Lateral Heterogeneity Following State I — State II Transition. , 1992, , 511-520.		3
278	Molecular Mechanisms for Activation of Non-Photochemical Fluorescence Quenching: From Unicellular Algae to Mosses and Higher Plants. Advances in Photosynthesis and Respiration, 2014, , 315-331.	1.0	3
279	Identification and characterization of photosystem II chlorophyll a / b binding proteins in Marchantia polymorpha L Planta, 1998, 204, 260-267.	3.2	2
280	Algae: A New Biomass Resource. , 2019, , 165-197.		2
281	Light-Harvesting Chlorophyll-Proteins of Barley Photosystem I. , 1987, , 61-64.		2
282	The Role of LHCII in Thylakoid Membranes. , 1987, , 277-280.		2
283	The Role of Light Harvesting Complex II and of the Minor Chlorophyll a/b Proteins in the Organization of the Photosystem II Antenna System. , 1990, , 1169-1176.		2
284	Properties of the Minor Chlorophyll a/b Proteins CP29, CP26 and CP24 from Zea mays Photosystem II Membranes., 1990,, 1209-1212.		2
285	Zeaxanthin-induced fluorescence quenching in the minor antenna CP29. , 1998, , 333-336.		2
286	Loss of a single chlorophyll in CP29 triggers re-organization of the Photosystem II supramolecular assembly. Biochimica Et Biophysica Acta - Bioenergetics, 2022, 1863, 148555.	1.0	2
287	The Chloroplast Gene ycf9 Encodes a Photosystem II (PSII) Core Subunit, PsbZ, That Participates in PSII Supramolecular Architecture. Plant Cell, 2001, 13, 1347.	6.6	1
288	Algae, a New Biomass Resource. , 2013, , 1-26.		1

#	Article	IF	Citations
289	Ultrabroadband two-dimensional electronic spectroscopy reveals energy flow pathways in LHCII across the visible spectrum. EPJ Web of Conferences, 2019, 205, 09034.	0.3	1
290	Look for methods, not conclusions. Cell Death and Disease, 2019, 10, 931.	6.3	1
291	Expression of a Hyperthermophilic Cellobiohydrolase in Transgenic Nicotiana tabacum by Protein Storage Vacuole Targeting. Plants, 2020, 9, 1799.	3.5	1
292	A new function for the xanthophyll zeaxanthin: glueing chlorophyll biosynthesis to thylakoid protein assembly. Biochemical Journal, 2021, 478, 61-62.	3.7	1
293	Elucidation of Electronic Structure and Quantum Coherence in LHCII with Polarized 2D Spectroscopy. , 2010, , .		1
294	cDNA Deduced Amino Acid Sequences of Maize CP24 and CP26, the Two Major Zeaxanthin-Binding Proteins of Photosystem II., 1995, , 199-202.		1
295	In Vitro Reconstitution and Pigment Binding Properties of Recombinant CP29 and CP24., 1995,, 271-274.		1
296	Algae: A New Biomass Resource. , 2017, , 1-33.		1
297	Polyamines in Chloroplasts: Post-Translational Modification of Clorophyll- <i>a/b</i> Proteins. Giornale Botanico Italiano (Florence, Italy: 1962), 1994, 128, 329-329.	0.0	0
298	In Vitro Reconstitution and Pigment Binding Properties of Recombinant CP29 and CP24. Giornale Botanico Italiano (Florence, Italy: 1962), 1995, 129, 1073-1074.	0.0	0
299	Xantophyll Cycle Pigments in Wild Type Arabidopsis and in aba Mutants Blocked in Zeaxanthin Epoxidation. Giornale Botanico Italiano (Florence, Italy: 1962), 1995, 129, 1077-1078.	0.0	0
300	Determining Chlorophyll Orientation in the CP29 Light Harvesting Complex with Arithmetic Polarized 2D Electronic Spectroscopy. , 2010 , , .		0
301	13 Finding the bottleneck: A research strategy for improved biomass production. , 0, , .		0
302	Kinetic Description of Energy and Charge transfer Processes in PSI from Arabidopsis thaliana. , 2008, , 323-326.		0
303	Cell-Specific Expression of LHCII and The Organisation of the Photosynthetic Reaction Centres in Chloroplast Thylakoids. , 1987, , 93-104.		0
304	Organization of the Photosystem II Antenna System of Maize Plants Grown Under Intermittent Light Condition., 1992,, 405-410.		0
305	Xantophyll Cycle Pigments in Wild Type Arabidopsis and in aba Mutants Blocked in Zeaxanthin Epoxidation., 1995,, 3059-3062.		0
306	Thermal Equilibration of Excited States in Antenna of PSI-200. , 1995, , 183-186.		0

#	Article	lF	CITATIONS
307	Mutation analysis of either protein or chromophore moieties in Higher Plants Light Harvesting Proteins., 1998,, 253-258.		0
308	Studying Spatio-Energetic Dynamics in Light Harvesting Complex II using Two-Dimensional Electronic-Vibrational Spectroscopy. , 2016, , .		0
309	Mapping out Photoprotective Dissipation in Green Plants Using Ultrabroadband 2D Electronic Spectroscopy., 2020,,.		O
310	Carotenoid-Mediated Light Harvesting in Plants Uncovered with Ultrabroadband Two-Dimensional Electronic Spectroscopy. , 2020, , .		0
311	The intrusion of ecology into hydrology and morphodynamics. Rendiconti Lincei, 0, , 1.	2.2	0