Yong J Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/437842/publications.pdf

Version: 2024-02-01

31818 66315 10,811 115 42 101 citations h-index g-index papers 118 118 118 20492 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The emerging role of selenium metabolic pathways in cancer: New therapeutic targets for cancer. Journal of Cellular Biochemistry, 2022, 123, 532-542.	1.2	17
2	Ferroptosis Inducer Improves the Efficacy of Oncolytic Virus-Mediated Cancer Immunotherapy. Biomedicines, 2022, 10, 1425.	1.4	11
3	Improved chemosensitivity following mucolytic therapy in patient-derived models of mucinous appendix cancer. Translational Research, 2021, 229, 100-114.	2.2	6
4	Glucose deprivationâ€induced endoplasmic reticulum stress response plays a pivotal role in enhancement of TRAIL cytotoxicity. Journal of Cellular Physiology, 2021, 236, 6666-6677.	2.0	11
5	The anti-fibrotic drug pirfenidone inhibits liver fibrosis by targeting the small oxidoreductase glutaredoxin-1. Science Advances, 2021, 7, eabg9241.	4.7	25
6	BAX-dependent mitochondrial pathway mediates the crosstalk between ferroptosis and apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2020, 25, 625-631.	2,2	51
7	Synergistic apoptosis following endoplasmic reticulum stress aggravation in mucinous colon cancer. Orphanet Journal of Rare Diseases, 2020, 15, 211.	1.2	6
8	The interplay between apoptosis and ferroptosis mediated by ER stress. Apoptosis: an International Journal on Programmed Cell Death, 2020, 25, 783-783.	2.2	2
9	Ferroptotic agentâ€induced endoplasmic reticulum stress response plays a pivotal role in the autophagic process outcome. Journal of Cellular Physiology, 2020, 235, 6767-6778.	2.0	26
10	Ferroptosisâ€inducing agents enhance TRAILâ€induced apoptosis through upregulation of death receptor 5. Journal of Cellular Biochemistry, 2019, 120, 928-939.	1.2	51
11	Biological Aspects of Endoplasmic Reticulum Stress in Ferroptosis. , 2019, , 83-98.		0
12	Crosstalk Between Apoptosis and Autophagy Is Regulated by the Arginylated BiP/Beclin-1/p62 Complex. Molecular Cancer Research, 2018, 16, 1077-1091.	1.5	35
13	Ferroptosis-Induced Endoplasmic Reticulum Stress: Cross-talk between Ferroptosis and Apoptosis. Molecular Cancer Research, 2018, 16, 1073-1076.	1.5	233
14	PARK7 modulates autophagic proteolysis through binding to the N-terminally arginylated form of the molecular chaperone HSPA5. Autophagy, 2018, 14, 1870-1885.	4.3	23
15	Gliomaâ€derived cancer stem cells are hypersensitive to proteasomal inhibition. EMBO Reports, 2017, 18, 150-168.	2.0	29
16	Molecular crosstalk between ferroptosis and apoptosis: emerging role of ER stress-induced p53-independent PUMA expression. Oncotarget, 2017, 8, 115164-115178.	0.8	127
17	Secretory TRAIL-Armed Natural Killer Cell–Based Therapy: <i>In Vitro</i> and <i>In Vivo</i> Colorectal Peritoneal Carcinomatosis Xenograft. Molecular Cancer Therapeutics, 2016, 15, 1591-1601.	1.9	10
18	TRAILâ€Induced Caspase Activation Is a Prerequisite for Activation of the Endoplasmic Reticulum Stressâ€Induced Signal Transduction Pathways. Journal of Cellular Biochemistry, 2016, 117, 1078-1091.	1.2	11

#	Article	IF	CITATIONS
19	Cancer Stem Cells Protect Nonâ€Stem Cells From Anoikis: Bystander Effects. Journal of Cellular Biochemistry, 2016, 117, 2289-2301.	1.2	32
20	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
21	Hypoxia Promotes Synergy between Mitomycin C and Bortezomib through a Coordinated Process of Bcl-xL Phosphorylation and Mitochondrial Translocation of p53. Molecular Cancer Research, 2015, 13, 1533-1543.	1.5	6
22	HSP90 inhibitor NVP-AUY922 enhances TRAIL-induced apoptosis by suppressing the JAK2-STAT3-Mcl-1 signal transduction pathway in colorectal cancer cells. Cellular Signalling, 2015, 27, 293-305.	1.7	41
23	Role of Bcl-xL/Beclin-1 in synergistic apoptotic effects of secretory TRAIL-armed adenovirus in combination with mitomycin C and hyperthermia on colon cancer cells. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 1603-1615.	2.2	10
24	Role of Bcl-xL/Beclin-1 in interplay between apoptosis and autophagy in oxaliplatin and bortezomib-induced cell death. Biochemical Pharmacology, 2014, 88, 178-188.	2.0	51
25	Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells. Toxicology and Applied Pharmacology, 2014, 279, 253-265.	1.3	57
26	Role of the IL-6-JAK1-STAT3-Oct-4 pathway in the conversion of non-stem cancer cells into cancer stem-like cells. Cellular Signalling, 2013, 25, 961-969.	1.7	239
27	Evidence for Two Modes of Synergistic Induction of Apoptosis by Mapatumumab and Oxaliplatin in Combination with Hyperthermia in Human Colon Cancer Cells. PLoS ONE, 2013, 8, e73654.	1.1	13
28	The Role of Bcl-xL in Synergistic Induction of Apoptosis by Mapatumumab and Oxaliplatin in Combination with Hyperthermia on Human Colon Cancer. Molecular Cancer Research, 2012, 10, 1567-1579.	1.5	30
29	Breast Cancer Stem Cell-Like Cells Are More Sensitive to Ionizing Radiation than Non-Stem Cells: Role of ATM. PLoS ONE, 2012, 7, e50423.	1.1	28
30	Astaxanthin protects against MPTP/MPP+-induced mitochondrial dysfunction and ROS production in vivo and in vitro. Food and Chemical Toxicology, 2011, 49, 271-280.	1.8	181
31	Preferential accumulation within tumors and inÂvivo imaging by functionalized luminescent dendrimer lanthanide complexes. Biomaterials, 2011, 32, 9343-9352.	5.7	32
32	MEKK1/MEKK4 are responsible for TRAIL-induced JNK/p38 phosphorylation. Oncology Reports, 2011, 25, 537-44.	1.2	21
33	Hyperthermia-enhanced TRAIL- and mapatumumab-induced apoptotic death is mediated through mitochondria in human colon cancer cells. Journal of Cellular Biochemistry, 2011, 113, n/a-n/a.	1.2	15
34	Role of Bim in diallyl trisulfideâ€induced cytotoxicity in human cancer cells. Journal of Cellular Biochemistry, 2011, 112, 118-127.	1.2	38
35	Luminescence targeting and imaging using a nanoscale generation 3 dendrimer in an in vivo colorectal metastatic rat model. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 249-258.	1.7	29
36	TRAIL-induced caspase/p38 activation is responsible for the increased catalytic and invasive activities of Akt. International Journal of Oncology, 2011, 38, 249-56.	3.9	5

#	Article	IF	Citations
37	c-Cbl acts as a mediator of Src-induced activation of the PI3K-Akt signal transduction pathway during TRAIL treatment. Cellular Signalling, 2010, 22, 377-385.	1.7	39
38	c-Cbl-mediated degradation of TRAIL receptors is responsible for the development of the early phase of TRAIL resistance. Cellular Signalling, 2010, 22, 553-563.	1.7	48
39	Effect of hyperthermia in combination with TRAIL on the JNKâ€Bim signal transduction pathway and growth of xenograft tumors. Journal of Cellular Biochemistry, 2010, 110, 1073-1081.	1.2	18
40	Quercetin enhances TRAIL-induced apoptosis in prostate cancer cells via increased protein stability of death receptor 5. Life Sciences, 2010, 86, 351-357.	2.0	93
41	Effects of low dose quercetin: Cancer cellâ€specific inhibition of cell cycle progression. Journal of Cellular Biochemistry, 2009, 106, 73-82.	1.2	292
42	Magnolol induces apoptosis via inhibiting the EGFR/PI3K/Akt signaling pathway in human prostate cancer cells. Journal of Cellular Biochemistry, 2009, 106, 1113-1122.	1,2	102
43	Reactive oxygen species upâ€regulate p53 and Puma; a possible mechanism for apoptosis during combined treatment with TRAIL and wogonin. British Journal of Pharmacology, 2009, 157, 1189-1202.	2.7	77
44	Effect of hyperthermia and chemotherapeutic agents on TRAIL-induced cell death in human colon cancer cells. Journal of Cellular Biochemistry, 2008, 103, 98-109.	1.2	19
45	Flavonoidsâ€induced accumulation of hypoxiaâ€inducible factor (HIF)â€Îα/2α is mediated through chelation of iron. Journal of Cellular Biochemistry, 2008, 103, 1989-1998.	1.2	72
46	Effect of UV irradiation on colorectal cancer cells with acquired TRAIL resistance. Journal of Cellular Biochemistry, 2008, 104, 1172-1180.	1,2	8
47	Pretreatment of docetaxel enhances TRAILâ€mediated apoptosis in prostate cancer cells. Journal of Cellular Biochemistry, 2008, 104, 1636-1646.	1.2	28
48	Quercetin suppresses hypoxiaâ€induced accumulation of hypoxiaâ€inducible factorâ€1α (HIFâ€1α) through inhibiting protein synthesis. Journal of Cellular Biochemistry, 2008, 105, 546-553.	1.2	66
49	Quercetinâ€induced ubiquitination and downâ€regulation of Herâ€2/ <i>neu</i>). Journal of Cellular Biochemistry, 2008, 105, 585-595.	1.2	65
50	Quercetin augments TRAIL-induced apoptotic death: Involvement of the ERK signal transduction pathway. Biochemical Pharmacology, 2008, 75, 1946-1958.	2.0	156
51	Role of p53, PUMA, and Bax in wogonin-induced apoptosis in human cancer cells. Biochemical Pharmacology, 2008, 75, 2020-2033.	2.0	119
52	Role of Bax in quercetin-induced apoptosis in human prostate cancer cells. Biochemical Pharmacology, 2008, 75, 2345-2355.	2.0	101
53	Differential cleavage of Mst1 by caspase-7/-3 is responsible for TRAIL-induced activation of the MAPK superfamily. Cellular Signalling, 2008, 20, 892-906.	1.7	63
54	Evidence for Two Modes of Development of Acquired Tumor Necrosis Factor-related Apoptosis-inducing Ligand Resistance. Journal of Biological Chemistry, 2007, 282, 319-328.	1.6	55

#	Article	IF	CITATIONS
55	TRAIL apoptosis is enhanced by quercetin through Akt dephosphorylation. Journal of Cellular Biochemistry, 2007, 100, 998-1009.	1.2	84
56	Effect of hyperthermia on TRAIL-induced apoptotic death in human colon cancer cells: Development of a novel strategy for regional therapy. Journal of Cellular Biochemistry, 2007, 101, 619-630.	1.2	13
57	Time sequence of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and cisplatin treatment is responsible for a complex pattern of synergistic cytotoxicity. Journal of Cellular Biochemistry, 2006, 98, 1284-1295.	1.2	17
58	Hyperthermia enhances tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human cancer cells. International Journal of Hyperthermia, 2006, 22, 713-728.	1.1	14
59	Amiloride augments TRAIL-induced apoptotic death by inhibiting phosphorylation of kinases and phosphatases associated with the P13K-Akt pathway. Oncogene, 2005, 24, 355-366.	2.6	42
60	Hypoxia and low glucose differentially augments TRAIL-induced apoptotic death. Molecular and Cellular Biochemistry, 2005, 270, 89-97.	1.4	15
61	Dissociation of Akt1 from its negative regulator JIP1 is mediated through the ASK1–MEK–JNK signal transduction pathway during metabolic oxidative stress. Journal of Cell Biology, 2005, 170, 61-72.	2.3	65
62	Signal Pathway of Hypoxia-Inducible Factor- $1\hat{l}\pm$ Phosphorylation and its Interaction with von Hippel-Lindau Tumor Suppressor Protein During Ischemia in MiaPaCa-2 Pancreatic Cancer Cells. Clinical Cancer Research, 2005, 11, 7607-7613.	3.2	62
63	Pretreatment of Acetylsalicylic Acid Promotes Tumor Necrosis Factor-related Apoptosis-inducing Ligand-induced Apoptosis by Down-regulating BCL-2 Gene Expression. Journal of Biological Chemistry, 2005, 280, 41047-41056.	1.6	58
64	Sulforaphane-induced Cell Death in Human Prostate Cancer Cells Is Initiated by Reactive Oxygen Species. Journal of Biological Chemistry, 2005, 280, 19911-19924.	1.6	321
65	TRAIL and Ceramide. Vitamins and Hormones, 2004, 67, 229-255.	0.7	8
66	Reconstitution of Caspase-3 Confers Low Glucose-Enhanced Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Cytotoxicity and Akt Cleavage. Clinical Cancer Research, 2004, 10, 1894-1900.	3.2	13
67	Diallyl trisulfide-induced apoptosis in human prostate cancer cells involves c-Jun N-terminal kinase and extracellular-signal regulated kinase-mediated phosphorylation of Bcl-2. Oncogene, 2004, 23, 5594-5606.	2.6	255
68	Daxx deletion mutant(amino acids 501–625)-induced apoptosis occurs through the JNK/p38-Bax-dependent mitochondrial pathway. Journal of Cellular Biochemistry, 2004, 92, 1257-1270.	1.2	30
69	Low extracellular pH augments TRAIL-induced apoptotic death through the mitochondria-mediated caspase signal transduction pathway. Experimental Cell Research, 2004, 293, 129-143.	1.2	30
70	Catalase, but not MnSOD, inhibits glucose deprivation-activated ASK1-MEK-MAPK signal transduction pathway and prevents relocalization of Daxx: Hydrogen peroxide as a major second messenger of metabolic oxidative stress. Journal of Cellular Biochemistry, 2003, 90, 304-314.	1.2	40
71	Reconstitution of galectin-3 alters glutathione content and potentiates TRAIL-induced cytotoxicity by dephosphorylation of Akt. Experimental Cell Research, 2003, 288, 21-34.	1.2	48
72	Role of the ASK1-SEK1-JNK1-HIPK1 Signal in Daxx Trafficking and ASK1 Oligomerization. Journal of Biological Chemistry, 2003, 278, 47245-47252.	1.6	79

#	Article	IF	CITATIONS
73	Differential role of glutaredoxin and thioredoxin in metabolic oxidative stress-induced activation of apoptosis signal-regulating kinase 1. Biochemical Journal, 2003, 373, 845-853.	1.7	164
74	Enhancement of Metabolic Oxidative Stress-Induced Cytotoxicity by the Thioredoxin Inhibitor 1-Methylpropyl 2-Imidazolyl Disulfide Is Mediated through the ASK1-SEK1-JNK1 Pathway. Molecular Pharmacology, 2002, 62, 1409-1417.	1.0	17
75	Role of Glutaredoxin in Metabolic Oxidative Stress. Journal of Biological Chemistry, 2002, 277, 46566-46575.	1.6	240
76	Analysis of Heat-Shock Transcription Factor and Element-Binding Activity., 2002, 196, 131-138.		1
77	Role of Galectin-3 in Breast Cancer Metastasis. American Journal of Pathology, 2002, 160, 1069-1075.	1.9	78
78	Gene transfer into human prostate adenocarcinoma cells with an adenoviral vector: Hyperthermia enhances a double suicide gene expression, cytotoxicity and radiotoxicity. Cancer Gene Therapy, 2002, 9, 267-274.	2.2	16
79	Low glucose-enhanced TRAIL cytotoxicity is mediated through the ceramide–Akt–FLIP pathway. Oncogene, 2002, 21, 337-346.	2.6	65
80	Cooperative interaction between interleukin 10 and galectin-3 against liver ischemia-reperfusion injury. Clinical Cancer Research, 2002, 8, 217-20.	3.2	10
81	Replicating adenoviral vector–mediated transfer of a heat-inducible double suicide gene for gene therapy, 2001, 8, 397-404.	2.2	38
82	Sodium nitroprusside enhances TRAIL-induced apoptosis via a mitochondria-dependent pathway in human colorectal carcinoma CX-1 cells. Oncogene, 2001, 20, 1476-1485.	2.6	70
83	Role of small heat shock protein HSP25 in radioresistance and glutathione-redox cycle. Journal of Cellular Physiology, 2000, 183, 100-107.	2.0	88
84	Dominant-negative Jun N-terminal protein kinase (JNK-1) inhibits metabolic oxidative stress during glucose deprivation in a human breast carcinoma cell line. Free Radical Biology and Medicine, 2000, 28, 575-584.	1.3	27
85	Glucose Deprivationâ€Induced Oxidative Stress in Human Tumor Cells: A Fundamental Defect in Metabolism?. Annals of the New York Academy of Sciences, 2000, 899, 349-362.	1.8	288
86	Hypoxia-induced bFGF gene expression is mediated through the JNK signal transduction pathway. Molecular and Cellular Biochemistry, 1999, 202, 1-8.	1.4	43
87	Adenoviral transduction of a cytosine deaminase/thymidine kinase fusion gene into prostate carcinoma cells enhances prodrug and radiation sensitivity., 1999, 82, 293-297.		29
88	The role of protein kinase Cα in Uâ€87 glioma invasion. International Journal of Developmental Neuroscience, 1999, 17, 447-461.	0.7	33
89	Differential induction of cell death in human glioma cell lines by sodium nitroprusside. , 1998, 82, 1137-1145.		26
90	Overexpression of HSP25 reduces the level of TNFα-induced oxidative DNA damage biomarker, 8-hydroxy-2′-deoxyguanosine, in L929 cells. , 1998, 174, 27-34.		50

#	Article	IF	CITATIONS
91	Glucose Deprivation-induced Cytotoxicity and Alterations in Mitogen-activated Protein Kinase Activation Are Mediated by Oxidative Stress in Multidrug-resistant Human Breast Carcinoma Cells. Journal of Biological Chemistry, 1998, 273, 5294-5299.	1.6	195
92	Hypoglycemia-induced c-Jun Phosphorylation Is Mediated by c-Jun N-terminal Kinase 1 and Lyn Kinase in Drug-resistant Human Breast Carcinoma MCF-7/ADR Cells. Journal of Biological Chemistry, 1997, 272, 11690-11693.	1.6	39
93	Examination of the molecular basis for the lack of alphaB-crystallin expression in L929 cells. Molecular and Cellular Biochemistry, 1997, 170, 31-42.	1.4	4
94	Differential effect of glucose deprivation on MAPK activation in drug sensitive human breast carcinoma MCF-7 and multidrug resistant MCF-7/ADR cells. Molecular and Cellular Biochemistry, 1997, 170, 23-30.	1.4	21
95	Comparison of tumor growth betweenHSP25- andHSP27-transfected murine L929 cells in nude mice. , 1997, 72, 871-877.		30
96	Excess protein in nuclei isolated from heat-shocked cells results from a reduced extractability of nuclear proteins. Journal of Cellular Physiology, 1996, 167, 369-379.	2.0	27
97	Thermotolerance expression in mitotic CHO cells without increased translation of heat shock proteins., 1996, 169, 420-428.		17
98	Thermal response in murine L929 cells lacking ?B-crystallin expression and ?B-crystallin expressing L929 transfectants. Molecular and Cellular Biochemistry, 1996, 155, 51-60.	1.4	18
99	Hypoglycemia-induced AP-1 transcription factor and basic fibroblast growth factor gene expression in multidrug resistant human breast carcinoma MCF-7/ADR cells. Molecular and Cellular Biochemistry, 1996, 155, 163-71.	1.4	18
100	Lack of radiosensitization after paclitaxel treatment of three human carcinoma cell lines. Cancer, 1995, 75, 2262-2268.	2.0	45
101	Heat-Induced bFGF gene expression in the absence of heat shock element correlates with enhanced AP-1 binding activity. Journal of Cellular Physiology, 1995, 164, 404-413.	2.0	26
102	Synergistic effects of cytokine and hyperthermia on cytotoxicity in HT-29 cells are not mediated by alteration of induced protein levels. Journal of Cellular Physiology, 1993, 155, 27-35.	2.0	15
103	Effect of thermotolerance on heat-induced excess nuclear-associated proteins. Journal of Cellular Physiology, 1993, 156, 171-181.	2.0	9
104	Expression, synthesis, and phosphorylation of HSP28 family during development and decay of thermotolerance in CHO plateau-phase cells. Journal of Cellular Physiology, 1992, 150, 441-446.	2.0	12
105	Heat-resistant variants of the Chinese hamster ovary cell: Alteration of cellular structure and expression of vimentin. Journal of Cellular Physiology, 1992, 151, 138-146.	2.0	13
106	Development of acute thermotolerance in 1929 cells: Lack of HSP28 synthesis and phosphorylation. Journal of Cellular Physiology, 1992, 152, 118-125.	2.0	23
107	Constitutive HSP70: Oligomerization and its dependence on ATP binding. Journal of Cellular Physiology, 1992, 153, 353-361.	2.0	45
108	Differences in preferential synthesis and redistribution of HSP70 and HSP28 families by heat or sodium arsenite in chinese hamster ovary cells. Journal of Cellular Physiology, 1991, 149, 77-87.	2.0	24

YONG J LEE

#	Article	IF	CITATION
109	Effect of tunicamycin on glycosylation of a 50 kDa protein and thermotolerance development. Journal of Cellular Physiology, 1991, 149, 202-207.	2.0	5
110	Inhibition of protein synthesis and heat protection: Histidinol-resistant mutant cell lines. Journal of Cellular Physiology, 1991, 149, 396-402.	2.0	6
111	Effect of histidine on histidinol-induced heat protection in chinese hamster ovary cells. Journal of Cellular Physiology, 1990, 144, 401-407.	2.0	17
112	Correlation between redistribution of a 26 kDa protein and development of chronic thermotolerance in various mammalian cell lines. Journal of Cellular Physiology, 1990, 145, 324-332.	2.0	15
113	Heat protectors and heat-induced preferential redistribution of 26 and 70 kDa proteins in chinese hamster ovary cells. Journal of Cellular Physiology, 1989, 141, 510-516.	2.0	11
114	Protection of Chinese Hamster Ovary Cells from Hyperthermic Killing by Cycloheximide or Puromycin. Radiation Research, 1986, 106, 98.	0.7	64
115	Low glucose-enhanced TRAIL cytotoxicity is mediated through the ceramide–Akt–FLIP pathway. , 0, .		1