
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4378189/publications.pdf Version: 2024-02-01

FANYANG MO

#	Article	IF	CITATIONS
1	Electrocatalytic Oxidative Hydrofunctionalization Reactions of Alkenes via Co(II/III/IV) Cycle. ACS Catalysis, 2022, 12, 2132-2137.	11.2	34
2	Accurate Single-Molecule Kinetic Isotope Effects. Journal of the American Chemical Society, 2022, , .	13.7	8
3	Transition Metal Free Stannylation of Alkyl Halides: The Rapid Synthesis of Alkyltrimethylstannanes. Journal of Organic Chemistry, 2022, 87, 4291-4297.	3.2	3
4	Photo-induced radical borylation of hemiacetals via C–C bond cleavage. Tetrahedron, 2021, 80, 131867.	1.9	5
5	Recent Development of Aryl Diazonium Chemistry for the Derivatization of Aromatic Compounds. Chemical Reviews, 2021, 121, 5741-5829.	47.7	160
6	Single-molecule electrical spectroscopy of organocatalysis. Matter, 2021, 4, 2874-2885.	10.0	15
7	Unveiling the full reaction path of the Suzuki–Miyaura cross-coupling in a single-molecule junction. Nature Nanotechnology, 2021, 16, 1214-1223.	31.5	46
8	Transition metal- and light-free radical borylation of alkyl bromides and iodides using silane. Chemical Communications, 2021, 57, 5674-5677.	4.1	11
9	An accurate, high-speed, portable bifunctional electrical detector for COVID-19. Science China Materials, 2021, 64, 739-747.	6.3	29
10	Energyâ€Level Modulation in Diboronâ€Modified SnO ₂ for Highâ€Efficiency Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900217.	5.8	28
11	Electrocatalytic Oxidative Transformation of Organic Acids for Carbon–Heteroatom and Sulfur–Heteroatom Bond Formation. ChemSusChem, 2020, 13, 1661-1687.	6.8	17
12	Anodic oxidation triggered divergent 1,2- and 1,4-group transfer reactions of β-hydroxycarboxylic acids enabled by electrochemical regulation. Chemical Science, 2020, 11, 12021-12028.	7.4	18
13	Carboxylation of Alkenyl Boronic Acids and Alkenyl Boronic Acid Pinacol Esters with CO ₂ Catalyzed by Cuprous Halide. European Journal of Organic Chemistry, 2020, 2020, 2813-2818.	2.4	9
14	Organic Borylation Reactions via Radical Mechanism. Acta Chimica Sinica, 2020, 78, 1297.	1.4	14
15	Zn ⁺ –O [–] Dual-Spin Surface State Formation by Modification of ZnO Nanoparticles with Diboron Compounds. Langmuir, 2019, 35, 14173-14179.	3.5	5
16	Modification of TiO2 Nanoparticles with Organodiboron Molecules Inducing Stable Surface Ti3+ Complex. IScience, 2019, 20, 195-204.	4.1	24
17	Mn-Mediated Electrochemical Trifluoromethylation/C(sp ²)–H Functionalization Cascade for the Synthesis of Azaheterocycles. Organic Letters, 2019, 21, 762-766.	4.6	116
18	Transition-Metal-Free Borylation of Alkyl Iodides via a Radical Mechanism. Organic Letters, 2019, 21, 6597-6602.	4.6	51

#	Article	IF	CITATIONS
19	Back Cover: Electrochemical Radical Borylation of Aryl Iodides (Chin. J. Chem. 4/2019). Chinese Journal of Chemistry, 2019, 37, 420-420.	4.9	0
20	Electrochemical Radical Borylation of Aryl Iodides. Chinese Journal of Chemistry, 2019, 37, 347-351.	4.9	21
21	Cu-Catalysed carboxylation of aryl boronic acids with CO ₂ . Organic Chemistry Frontiers, 2019, 6, 3673-3677.	4.5	16
22	Câ^'H Bond Carboxylation with Carbon Dioxide. ChemSusChem, 2019, 12, 6-39.	6.8	131
23	Oxidant-Free C(sp ²)–H Functionalization/C–O Bond Formation: AÂKolbe Oxidative Cyclization Process. Journal of Organic Chemistry, 2018, 83, 3200-3207.	3.2	46

Renaissance of Sandmeyer-Type Reactions: Conversion of Aromatic Câ \in N Bonds into Câ \in X Bonds (X = B,) Tj ETQq0.0 orgBT/Overlock

25	Addition of Diazo Compounds <i>ipso</i> -C–H Bond to Carbon Disulfide: Synthesis of 1,2,3-Thiadiazoles under Mild Conditions. Journal of Organic Chemistry, 2018, 83, 4275-4278.	3.2	19
26	Cu(l)â€Catalyzed Asymmetric Crossâ€Coupling of <i>N</i> â€Tosylhydrazones and Trialkylsilylethynes: Enantioselective Construction of C(sp)—C(sp ³) Bonds. Chinese Journal of Chemistry, 2018, 36, 217-222.	4.9	20
27	Diboronâ€Assisted Interfacial Defect Control Strategy for Highly Efficient Planar Perovskite Solar Cells. Advanced Materials, 2018, 30, e1805085.	21.0	128
28	A general electrochemical strategy for the Sandmeyer reaction. Chemical Science, 2018, 9, 8731-8737.	7.4	67
29	Oxidant-free oxidation of C–H bonds by cathodic hydrogen evolution: a phosphonic Kolbe oxidation/cyclization process. Green Chemistry, 2018, 20, 3916-3920.	9.0	29
30	Recent Advances in Transition-Metal-Catalyzed Cross-Coupling Reactions With N -Tosylhydrazones. Advances in Organometallic Chemistry, 2017, 67, 151-219.	1.0	22
31	Direct Carboxylation of the Diazo Group <i>ipso</i> -C(sp ²)–H bond with Carbon Dioxide: Access to Unsymmetrical Diazomalonates and Derivatives. Organic Letters, 2017, 19, 6756-6759.	4.6	17
32	Rhodium(I) atalyzed Câ^'C Bond Activation of Siloxyvinylcyclopropanes with Diazoesters. Angewandte Chemie, 2016, 128, 15627-15631.	2.0	7
33	Rhodium(I) atalyzed Câ^'C Bond Activation of Siloxyvinylcyclopropanes with Diazoesters. Angewandte Chemie - International Edition, 2016, 55, 15401-15405.	13.8	27
34	Enantioselective Synthesis of Trisubstituted Allenes via Cu(I)-Catalyzed Coupling of Diazoalkanes with Terminal Alkynes. Journal of the American Chemical Society, 2016, 138, 14558-14561.	13.7	149
35	Metal-Free Aromatic Carbon–Phosphorus Bond Formation via a Sandmeyer-Type Reaction. Journal of Organic Chemistry, 2016, 81, 11603-11611.	3.2	42
36	Frontispiece: Synthesis, Structure, and Reactivity of Anionic sp2-sp3Diboron Compounds: Readily Accessible Boryl Nucleophiles. Chemistry - A European Journal, 2015, 21, n/a-n/a.	3.3	0

#	Article	IF	CITATIONS
37	Bifunctional Ligand-Assisted Catalytic Ketone α-Alkenylation with Internal Alkynes: Controlled Synthesis of Enones and Mechanistic Studies. Journal of the American Chemical Society, 2015, 137, 15518-15527.	13.7	76
38	Transition metal-catalyzed ketone-directed or mediated C–H functionalization. Chemical Society Reviews, 2015, 44, 7764-7786.	38.1	497
39	Synthesis, Structure, and Reactivity of Anionic sp ² –sp ³ Diboron Compounds: Readily Accessible Boryl Nucleophiles. Chemistry - A European Journal, 2015, 21, 7082-7098.	3.3	175
40	Cholate-Based Synthesis of Size-Tunable Cage Compounds. Journal of Organic Chemistry, 2015, 80, 1221-1228.	3.2	8
41	Synthesis of Trimethylstannyl Arylboronate Compounds by Sandmeyer-Type Transformations and Their Applications in Chemoselective Cross-Coupling Reactions. Journal of Organic Chemistry, 2014, 79, 1979-1988.	3.2	36
42	Regioselective ketone α-alkylation with simple olefins via dual activation. Science, 2014, 345, 68-72.	12.6	248
43	Alcohols or Masked Alcohols as Directing Groups for C–H Bond Functionalization. Chemistry Letters, 2014, 43, 264-271.	1.3	87
44	Silver-Mediated Trifluoromethylation of Aryldiazonium Salts: Conversion of Amino Group into Trifluoromethyl Group. Journal of the American Chemical Society, 2013, 135, 10330-10333.	13.7	222
45	Synthesis of Aryl Trimethylstannanes from Aryl Amines: A Sandmeyerâ€Type Stannylation Reaction. Angewandte Chemie - International Edition, 2013, 52, 11581-11584.	13.8	78
46	Synthesis of Pinacol Arylboronates from Aromatic Amines: A Metal-Free Transformation. Journal of Organic Chemistry, 2013, 78, 1923-1933.	3.2	128
47	Recent applications of arene diazonium salts in organic synthesis. Organic and Biomolecular Chemistry, 2013, 11, 1582.	2.8	396
48	Synthesis of <i>ortho</i> â€Acylphenols through the Palladiumâ€Catalyzed Ketoneâ€Directed Hydroxylation of Arenes. Angewandte Chemie - International Edition, 2012, 51, 13075-13079.	13.8	195
49	Studies toward the Synthesis of (<i>R</i>)â€(+)â€Harmicine. Chinese Journal of Chemistry, 2012, 30, 2297-2302.	4.9	5
50	Increments for ¹ H and ¹³ C NMR chemical shifts in pinacol arylboronates. Canadian Journal of Chemistry, 2012, 90, 71-74.	1.1	1
51	Catalytic Functionalization of Unactivated sp ³ C–H Bonds via <i>exo</i> -Directing Groups: Synthesis of Chemically Differentiated 1,2-Diols. Journal of the American Chemical Society, 2012, 134, 16991-16994.	13.7	203
52	Catalystâ€Free Imidation of Allyl Sulfides with Chloramineâ€T and Subsequent [2,3]â€Sigmatropic Rearrangement. Chinese Journal of Chemistry, 2012, 30, 2029-2035.	4.9	5
53	Gold(III)-Catalyzed Direct Acetoxylation of Arenes with Iodobenzene Diacetate. Organic Letters, 2011, 13, 4988-4991.	4.6	42
54	A base-free, one-pot diazotization/cross-coupling of anilines with arylboronic acids. Tetrahedron Letters, 2011, 52, 518-522.	1.4	35

#	Article	IF	CITATIONS
55	New Developments in Aromatic Halogenation, Borylation, and Cyanation. Chimia, 2011, 65, 909.	0.6	4
56	Diastereoselective addition of lithium enolate of γ-substituted α-diazoacetoacetate to N-sulfinyl imines. Science Bulletin, 2010, 55, 2847-2854.	1.7	0
57	Direct Conversion of Arylamines to Pinacol Boronates: A Metalâ€Free Borylation Process. Angewandte Chemie - International Edition, 2010, 49, 1846-1849.	13.8	206
58	Goldâ€Catalyzed Halogenation of Aromatics by <i>N</i> â€Halosuccinimides. Angewandte Chemie - International Edition, 2010, 49, 2028-2032.	13.8	213
59	Enantioselective synthesis of condensed and transannular ring skeletons containing pyrrolidine moiety. Tetrahedron, 2010, 66, 1274-1279.	1.9	20
60	Gold(III)-Catalyzed Halogenation of Aromatic Boronates with <i>N</i> -Halosuccinimides. Organic Letters, 2010, 12, 5474-5477.	4.6	94
61	AuPPh3Cl/AgOTf-catalyzed reaction of terminal alkynes: nucleophilic addition to activated CO bond. Tetrahedron Letters, 2009, 50, 6053-6056.	1.4	27
62	Highly Diastereoselective Addition of the Lithium Enolate of α-Diazoacetoacetate to N-Sulfinyl Imines: Enantioselective Synthesis of 2-Oxo and 3-Oxo Pyrrolidines. Journal of Organic Chemistry, 2008, 73, 1971-1974.	3.2	45