Manabu Kurokawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4377361/publications.pdf Version: 2024-02-01

MANABIL KUDOKAWA

#	Article	IF	CITATIONS
1	SGK2, 14-3-3, and HUWE1 Cooperate to Control the Localization, Stability, and Function of the Oncoprotein PTOV1. Molecular Cancer Research, 2022, 20, 231-243.	3.4	3
2	Predicting clinical outcomes of cancer patients with a p53 deficiency gene signature. Scientific Reports, 2022, 12, 1317.	3.3	9
3	The protein YWHAE (14â€3â€3 epsilon) in spermatozoa is essential for male fertility. Andrology, 2021, 9, 312-328.	3.5	6
4	Macromolecular Crowding: a Hidden Link Between Cell Volume and Everything Else. Cellular Physiology and Biochemistry, 2021, 55, 25-40.	1.6	20
5	Direct regulation of Chk1 protein stability by E3 ubiquitin ligase HUWE1. FEBS Journal, 2020, 287, 1985-1999.	4.7	35
6	Regulation of the p53 Family Proteins by the Ubiquitin Proteasomal Pathway. International Journal of Molecular Sciences, 2020, 21, 261.	4.1	36
7	Fatty acid-like Pt(<scp>iv</scp>) prodrugs overcome cisplatin resistance in ovarian cancer by harnessing CD36. Chemical Communications, 2020, 56, 10706-10709.	4.1	26
8	X-Linked Huwe1 Is Essential for Oocyte Maturation and Preimplantation Embryo Development. IScience, 2020, 23, 101523.	4.1	15
9	Engineering liposomal nanoparticles of cholesterol-tethered amphiphilic Pt(<scp>iv</scp>) prodrugs with prolonged circulation time in blood. Dalton Transactions, 2020, 49, 8107-8113.	3.3	10
10	CD36: a key mediator of resistance to HER2 inhibitors in breast cancer. Molecular and Cellular Oncology, 2020, 7, 1715766.	0.7	8
11	Lipid metabolic reprogramming as an emerging mechanism of resistance to kinase inhibitors in breast cancer. , 2020, 3, .		20
12	CD36-Mediated Metabolic Rewiring of Breast Cancer Cells Promotes Resistance to HER2-Targeted Therapies. Cell Reports, 2019, 29, 3405-3420.e5.	6.4	104
13	MDM2 (Murine Double Minute 2). , 2018, , 3021-3028.		Ο
14	MDM2 (Murine Double Minute 2). , 2016, , 1-8.		0
15	Inverse association between MDM2 and HUWE1 protein expression levels in human breast cancer and liposarcoma. International Journal of Clinical and Experimental Pathology, 2016, 9, 6342-6349.	0.5	8
16	Regulation of MDM2 Stability After DNA Damage. Journal of Cellular Physiology, 2015, 230, 2318-2327.	4.1	39
17	Receptor tyrosine kinase ERBB4 mediates acquired resistance to ERBB2 inhibitors in breast cancer cells. Cell Cycle, 2015, 14, 648-655.	2.6	66
18	Automated, quantitative analysis of histopathological staining in nuclei. AMIA Summits on Translational Science Proceedings, 2014, 2014, 54-9.	0.4	0

#	Article	IF	CITATIONS
19	Metabolic Activation of CaMKII by Coenzyme A. Molecular Cell, 2013, 52, 325-339.	9.7	35
20	Evading apoptosis in cancer. Trends in Cell Biology, 2013, 23, 620-633.	7.9	436
21	Engineering a BCR-ABL–activated caspase for the selective elimination of leukemic cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2300-2305.	7.1	5
22	A Network of Substrates of the E3 Ubiquitin Ligases MDM2 and HUWE1 Control Apoptosis Independently of p53. Science Signaling, 2013, 6, ra32.	3.6	56
23	Rsk-mediated phosphorylation and 14-3-3ε binding of Apaf-1 suppresses cytochrome <i>c</i> -induced apoptosis. EMBO Journal, 2012, 31, 1279-1292.	7.8	39
24	Stalling in mitosis and releasing the apoptotic brake. EMBO Journal, 2010, 29, 2255-2257.	7.8	12
25	Metabolic Control of Oocyte Apoptosis Mediated by 14-3-3ζ-Regulated Dephosphorylation of Caspase-2. Developmental Cell, 2009, 16, 856-866.	7.0	91
26	Caspases and Kinases in a Death Grip. Cell, 2009, 138, 838-854.	28.9	394
27	Inhibition of Apoptosome Formation by Suppression of Hsp90β Phosphorylation in Tyrosine Kinase-Induced Leukemias. Molecular and Cellular Biology, 2008, 28, 5494-5506.	2.3	80
28	Comparison of Ca2+ and CaMKII responses in IVF and ICSI in the mouse. Molecular Human Reproduction, 2007, 13, 265-272.	2.8	17
29	Calcium and sperm components in the establishment of the membrane block to polyspermy: studies of ICSI and activation with sperm factor. Molecular Human Reproduction, 2007, 13, 557-565.	2.8	26
30	Proteolytic processing of phospholipase Cζ and [Ca2+]i oscillations during mammalian fertilization. Developmental Biology, 2007, 312, 407-418.	2.0	69
31	Calcium oscillations and mammalian egg activation. Journal of Cellular Physiology, 2006, 206, 565-573.	4.1	106
32	Transgenic RNA Interference Reveals Role for Mouse Sperm Phospholipase Cζ in Triggering Ca2+ Oscillations During Fertilization1. Biology of Reproduction, 2005, 72, 992-996.	2.7	165
33	Functional, biochemical, and chromatographic characterization of the complete [Ca2+]i oscillation-inducing activity of porcine sperm. Developmental Biology, 2005, 285, 376-392.	2.0	94
34	Evidence that activation of Src family kinase is not required for fertilization-associated [Ca2+]i oscillations in mouse eggs. Reproduction, 2004, 127, 441-454.	2.6	44
35	Patterns of Intracellular Calcium Oscillations in Horse Oocytes Fertilized by Intracytoplasmic Sperm Injection: Possible Explanations for the Low Success of This Assisted Reproduction Technique in the Horse1. Biology of Reproduction, 2004, 70, 936-944.	2.7	22
36	Mammalian Fertilization: From Sperm Factor to Phospholipase Cζ. Biology of the Cell, 2004, 96, 37-45.	2.0	68

Manabu Kurokawa

#	Article	IF	CITATIONS
37	Cell cycle-coupled [Ca2+]i oscillations in mouse zygotes and function of the inositol 1,4,5-trisphosphate receptor-1. Developmental Biology, 2004, 274, 94-109.	2.0	53
38	Fertilizome Project: Proteomics of Fertilization Signaling - The Biological Bridge Between Gametogenesis and Embryogenesis. Current Proteomics, 2004, 1, 231-246.	0.3	1
39	Phospholipase Cl̂´4: from genome structure to physiological function. Advances in Enzyme Regulation, 2003, 43, 87-106.	2.6	9
40	Release of the Ca2+ oscillation-inducing sperm factor during mouse fertilization. Developmental Biology, 2003, 260, 536-547.	2.0	40
41	Phospholipase Cδ4 is required for Ca2+ mobilization essential for acrosome reaction in sperm. Journal of Cell Biology, 2003, 161, 79-88.	5.2	155
42	Reconstitution of Src-dependent Phospholipase Cl ³ Phosphorylation and Transient Calcium Release by Using Membrane Rafts and Cell-free Extracts from Xenopus Eggs. Journal of Biological Chemistry, 2003, 278, 38413-38420.	3.4	57
43	ICSI-generated mouse zygotes exhibit altered calcium oscillations, inositol 1,4,5-trisphosphate receptor-1 down-regulation, and embryo development. Molecular Human Reproduction, 2003, 9, 523-533.	2.8	96
44	Intracellular Calcium Oscillations Signal Apoptosis Rather than Activation in In Vitro Aged Mouse Eggs1. Biology of Reproduction, 2002, 66, 1828-1837.	2.7	153
45	Modifications of the Ca2+ release mechanisms of mouse oocytes by fertilization and by sperm factor. Molecular Human Reproduction, 2002, 8, 619-629.	2.8	17
46	Mechanisms underlying oocyte activation and postovulatory ageing. Reproduction, 2002, 124, 745-754.	2.6	160
47	Requirement of Phospholipase Cdelta 4 for the Zona Pellucida-Induced Acrosome Reaction. Science, 2001–292, 920-923	12.6	186