
William F Morris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/437728/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Climate manipulations differentially affect plant population dynamics within versus beyond northern range limits. Journal of Ecology, 2021, 109, 664-675.	4.0	18
2	Latitudinal gradients in population growth do not reflect demographic responses to climate. Ecological Applications, 2021, 31, e2242.	3.8	10
3	A critical comparison of integral projection and matrix projection models for demographic analysis. Ecological Monographs, 2021, 91, e01447.	5.4	21
4	Climate change impacts on population growth across a species' range differ due to nonlinear responses of populations to climate and variation in rates of climate change. PLoS ONE, 2021, 16, e0247290.	2.5	11
5	Testing Demographic Methods Using Field Studies of Five Dissimilar Species. Bulletin of the Ecological Society of America, 2021, 102, e01870.	0.2	0
6	Climate warming threatens the persistence of a community of disturbanceâ€adapted native annual plants. Ecology, 2021, 102, e03464.	3.2	12
7	Shifting correlations among multiple aspects of weather complicate predicting future demography of a threatened species. Ecosphere, 2021, 12, e03740.	2.2	2
8	Biotic and anthropogenic forces rival climatic/abiotic factors in determining global plant population growth and fitness. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1107-1112.	7.1	51
9	Asynchrony in individual and subpopulation fecundity stabilizes reproductive output of an alpine plant population. Ecology, 2019, 100, e02639.	3.2	7
10	Improving structured population models with more realistic representations of nonâ€normal growth. Methods in Ecology and Evolution, 2019, 10, 1431-1444.	5.2	4
11	Incorporating local adaptation into forecasts of species' distribution and abundance under climate change. Global Change Biology, 2019, 25, 775-793.	9.5	169
12	Geographic location, local environment, and individual size mediate the effects of climate warming and neighbors on a benefactor plant. Oecologia, 2019, 189, 243-253.	2.0	6
13	Aridity weakens population-level effects of multiple species interactions on <i>Hibiscus meyeri</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 543-548.	7.1	28
14	Both lifeâ€history plasticity and local adaptation will shape rangeâ€wide responses to climate warming in the tundra plant <i>Silene acaulis</i> . Clobal Change Biology, 2018, 24, 1614-1625.	9.5	57
15	Mechanism matters: the cause of fluctuations in boom–bust populations governs optimal habitat restoration strategy. Ecological Applications, 2018, 28, 356-372.	3.8	13
16	Ecological and evolutionary impacts of changing climatic variability. Biological Reviews, 2017, 92, 22-42.	10.4	201
17	Does climate variability influence the demography of wild primates? Evidence from longâ€ŧerm lifeâ€history data in seven species. Global Change Biology, 2017, 23, 4907-4921.	9.5	61
18	How effective are buffer zones in managing invasive beavers in Patagonia? A simulation study. Biodiversity and Conservation, 2017, 26, 2591-2605.	2.6	3

WILLIAM F MORRIS

#	Article	IF	CITATIONS
19	Female and male life tables for seven wild primate species. Scientific Data, 2016, 3, 160006.	5.3	66
20	Habitat restoration alters adult butterfly morphology and potential fecundity through effects on host plant quality. Ecosphere, 2016, 7, e01522.	2.2	8
21	Advancing environmentally explicit structured population models of plants. Journal of Ecology, 2016, 104, 292-305.	4.0	82
22	Demographic compensation among populations: what is it, how does it arise and what are its implications?. Ecology Letters, 2015, 18, 1139-1152.	6.4	96
23	Predicting changes in the distribution and abundance of species under environmental change. Ecology Letters, 2015, 18, 303-314.	6.4	348
24	Recommendations for Improving Recovery Criteria under the US Endangered Species Act. BioScience, 2015, 65, 189-199.	4.9	47
25	The demographic consequences of mutualism: ants increase host-plant fruit production but not population growth. Oecologia, 2015, 179, 435-446.	2.0	15
26	Do geographic, climatic or historical ranges differentiate the performance of central versus peripheral populations?. Global Ecology and Biogeography, 2015, 24, 611-620.	5.8	107
27	Empirical estimation of dispersal resistance surfaces: a case study with red-cockaded woodpeckers. Landscape Ecology, 2013, 28, 755-767.	4.2	76
28	Ability of Matrix Models to Explain the Past and Predict the Future of Plant Populations. Conservation Biology, 2013, 27, 968-978.	4.7	104
29	Variation in stochastic demography between and within central and peripheral regions in a widespread shortâ€lived herb. Ecology, 2013, 94, 1378-1388.	3.2	36
30	Matrix population models from 20 studies of perennial plant populations. Ecology, 2012, 93, 951-951.	3.2	12
31	Low Demographic Variability in Wild Primate Populations: Fitness Impacts of Variation, Covariation, and Serial Correlation in Vital Rates. American Naturalist, 2011, 177, E14-E28.	2.1	91
32	Aging in the Natural World: Comparative Data Reveal Similar Mortality Patterns Across Primates. Science, 2011, 331, 1325-1328.	12.6	204
33	How do plant ecologists use matrix population models?. Ecology Letters, 2011, 14, 1-8.	6.4	205
34	Higher survival at low density counteracts lower fecundity to obviate Allee effects in a perennial plant. Journal of Ecology, 2011, 99, 1162-1170.	4.0	22
35	Demographic compensation and tipping points in climate-induced range shifts. Nature, 2010, 467, 959-962.	27.8	381
36	Benefit and cost curves for typical pollination mutualisms. Ecology, 2010, 91, 1276-1285.	3.2	89

WILLIAM F MORRIS

#	Article	IF	CITATIONS
37	The Primate Life History Database: a unique shared ecological data resource. Methods in Ecology and Evolution, 2010, 1, 199-211.	5.2	109
38	Allee dynamics generated by protection mutualisms can drive oscillations in trophic cascades. Theoretical Ecology, 2008, 1, 77-88.	1.0	10
39	Simultaneous effects of food limitation and inducible resistance on herbivore population dynamics. Theoretical Population Biology, 2008, 73, 63-78.	1.1	29
40	LONGEVITY CAN BUFFER PLANT AND ANIMAL POPULATIONS AGAINST CHANGING CLIMATIC VARIABILITY. Ecology, 2008, 89, 19-25.	3.2	386
41	DIRECT AND INTERACTIVE EFFECTS OF ENEMIES AND MUTUALISTS ON PLANT PERFORMANCE: A META-ANALYSIS. Ecology, 2007, 88, 1021-1029.	3.2	208
42	Modeling vital rates improves estimation of population projection matrices. Population Ecology, 2006, 48, 79-89.	1.2	19
43	Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecology Letters, 2005, 8, 1088-1094.	6.4	467
44	UNDERSTANDING AND PREDICTING THE EFFECTS OF SPARSE DATA ON DEMOGRAPHIC ANALYSES. Ecology, 2005, 86, 1154-1163.	3.2	73
45	ENVIRONMENTAL FORCING AND THE COMPETITIVE DYNAMICS OF A GUILD OF CACTUS-TENDING ANT MUTUALISTS. Ecology, 2005, 86, 3190-3199.	3.2	24
46	HOW GENERAL ARE THE DETERMINANTS OF THE STOCHASTIC POPULATION GROWTH RATE ACROSS NEARBY SITES?. Ecological Monographs, 2005, 75, 119-137.	5.4	38
47	Correctly Estimating How Environmental Stochasticity Influences Fitness and Population Growth. American Naturalist, 2005, 166, E14-E21.	2.1	140
48	Buffering of Life Histories against Environmental Stochasticity: Accounting for a Spurious Correlation between the Variabilities of Vital Rates and Their Contributions to Fitness. American Naturalist, 2004, 163, 579-590.	2.1	166
49	Ecological Dynamics of Mutualist/Antagonist Communities. American Naturalist, 2003, 162, S24-S39.	2.1	126
50	Threeâ€Way Coexistence in Obligate Mutualistâ€Exploiter Interactions: The Potential Role of Competition. American Naturalist, 2003, 161, 860-875.	2.1	67
51	POPULATION VIABILITY ANALYSIS IN ENDANGERED SPECIES RECOVERY PLANS: PAST USE AND FUTURE IMPROVEMENTS. , 2002, 12, 708-712.		110
52	DETECTING POPULATION-LEVEL CONSEQUENCES OF ONGOING ENVIRONMENTAL CHANGE WITHOUT LONG-TERM MONITORING. Ecology, 1999, 80, 1537-1551.	3.2	61
53	Detecting Population-Level Consequences of Ongoing Environmental Change without Long-Term Monitoring. Ecology, 1999, 80, 1537.	3.2	1
54	Modeling Controlled Burning and Trampling Reduction for Conservation of <i>Hudsonia montana</i> . Conservation Biology, 1998, 12, 1291-1301.	4.7	11

WILLIAM F MORRIS

#	Article	IF	CITATIONS
55	Life history of the longâ€lived gynodioecious cushion plant Silene acaulis (Caryophyllaceae), inferred from sizeâ€based population projection matrices. American Journal of Botany, 1998, 85, 784-793.	1.7	124
56	Modeling Controlled Burning and Trampling Reduction for Conservation of Hudsonia montana. Conservation Biology, 1998, 12, 1291-1301.	4.7	52
57	Mutualism Denied? Nectar-Robbing Bumble Bees do not Reduce Female or Male Success of Bluebells. Ecology, 1996, 77, 1451-1462.	3.2	95
58	Climate change weakens the impact of disturbance interval on the growth rate of natural populations of Venus flytrap. Ecological Monographs, 0, , .	5.4	2