
Bernard Dumas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4377249/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Signatures of Adaptation to Obligate Biotrophy in the <i>Hyaloperonospora arabidopsidis</i> Genome. Science, 2010, 330, 1549-1551.	12.6	492
2	Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biology, 2010, 11, R73.	9.6	391
3	Distinctive Expansion of Potential Virulence Genes in the Genome of the Oomycete Fish Pathogen Saprolegnia parasitica. PLoS Genetics, 2013, 9, e1003272.	3.5	221
4	A Novel Arabidopsis-Colletotrichum Pathosystem for the Molecular Dissection of Plant-Fungal Interactions. Molecular Plant-Microbe Interactions, 2004, 17, 272-282.	2.6	214
5	Tissue-Specific Expression of Germin-Like Oxalate Oxidase during Development and Fungal Infection of Barley Seedlings. Plant Physiology, 1995, 107, 1091-1096.	4.8	167
6	Gene expression profiling and protection of Medicago truncatula against a fungal infection in response to an elicitor from green algae Ulva spp. Plant, Cell and Environment, 2004, 27, 917-928.	5.7	153
7	Cellulose Binding Domains of a Phytophthora Cell Wall Protein Are Novel Pathogen-Associated Molecular Patterns. Plant Cell, 2006, 18, 1766-1777.	6.6	149
8	<scp>NFP</scp> , a <scp>L</scp> ys <scp>M</scp> protein controlling <scp>N</scp> od <scp>f</scp> actor perception, also intervenes in <i><scp>M</scp>edicago truncatula</i> resistance to pathogens. New Phytologist, 2013, 198, 875-886.	7.3	144
9	Root rot disease of legumes caused by <i>Aphanomyces euteiches</i> . Molecular Plant Pathology, 2007, 8, 539-548.	4.2	140
10	Cell wall degrading enzymes, inhibitory proteins, and oligosaccharides participate in the molecular dialogue between plants and pathogens. Plant Physiology and Biochemistry, 2000, 38, 157-163.	5.8	133
11	Ste12 and Ste12-Like Proteins, Fungal Transcription Factors Regulating Development and Pathogenicity. Eukaryotic Cell, 2010, 9, 480-485.	3.4	131
12	Ulvan, a Sulfated Polysaccharide from Green Algae, Activates Plant Immunity through the Jasmonic Acid Signaling Pathway. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-11.	3.0	113
13	Transcriptome of Aphanomyces euteiches: New Oomycete Putative Pathogenicity Factors and Metabolic Pathways. PLoS ONE, 2008, 3, e1723.	2.5	109
14	Plenty Is No Plague: Streptomyces Symbiosis with Crops. Trends in Plant Science, 2017, 22, 30-37.	8.8	98
15	An Ulva armoricana extract protects plants against three powdery mildew pathogens. European Journal of Plant Pathology, 2011, 131, 393-401.	1.7	90
16	Three Glycosylated Polypeptides Secreted by Several Embryogenic Cell Cultures of Pine Show Highly Specific Serological Affinity to Antibodies Directed against the Wheat Germin Apoprotein Monomer. Plant Physiology, 1995, 108, 141-148.	4.8	88
17	Highâ€density genomeâ€wide association mapping implicates an <scp>F</scp> â€box encoding gene in <i><scp>M</scp>edicago truncatula</i> resistance to <i><scp>A</scp>phanomyces euteiches</i> . New Phytologist, 2014, 201, 1328-1342.	7.3	86
18	Partial Resistance of <i>Medicago truncatula</i> to <i>Aphanomyces euteiches</i> Is Associated with Protection of the Root Stele and Is Controlled by a Major QTL Rich in Proteasome-Related Genes. Molecular Plant-Microbe Interactions, 2009, 22, 1043-1055.	2.6	82

BERNARD DUMAS

#	Article	IF	CITATIONS
19	Cell Wall Chitosaccharides Are Essential Components and Exposed Patterns of the Phytopathogenic Oomycete <i>Aphanomyces euteiches</i> . Eukaryotic Cell, 2008, 7, 1980-1993.	3.4	77
20	Cytological, Genetic, and Molecular Analysis to Characterize Compatible and Incompatible Interactions Between Medicago truncatula and Colletotrichum trifolii. Molecular Plant-Microbe Interactions, 2004, 17, 909-920.	2.6	74
21	Regulation of Enzymes Involved in Lignin Biosynthesis: Induction ofO-Methyltransferase mRNAs During the Hypersensitive Reaction of Tobacco to Tobacco Mosaic Virus. Molecular Plant-Microbe Interactions, 1992, 5, 294.	2.6	73
22	Use of Green Fluorescent Protein To Detect Expression of an Endopolygalacturonase Gene of <i>Colletotrichum lindemuthianum</i> during Bean Infection. Applied and Environmental Microbiology, 1999, 65, 1769-1771.	3.1	67
23	Endopolygalacturonase Genes from Colletotrichum lindemuthianum: Cloning of CLPG2 and Comparison of Its Expression to That of CLPG1 During Saprophytic and Parasitic Growth of the Fungus. Molecular Plant-Microbe Interactions, 1997, 10, 769-775.	2.6	64
24	Genomics analysis of Aphanomyces spp. identifies a new class of oomycete effector associated with host adaptation. BMC Biology, 2018, 16, 43.	3.8	62
25	Nucleotide Sequence of a Complementary DNA Encoding <i>O</i> -Methyltransferase from Poplar. Plant Physiology, 1992, 98, 796-797.	4.8	57
26	Genetic Dissection of Resistance to Anthracnose and Powdery Mildew in <i>Medicago truncatula</i> . Molecular Plant-Microbe Interactions, 2008, 21, 61-69.	2.6	55
27	MS-CleanR: A Feature-Filtering Workflow for Untargeted LC–MS Based Metabolomics. Analytical Chemistry, 2020, 92, 9971-9981.	6.5	55
28	<scp>CRN</scp> 13 candidate effectors from plant and animal eukaryotic pathogens are <scp>DNA</scp> â€binding proteins which trigger host <scp>DNA</scp> damage response. New Phytologist, 2016, 210, 602-617.	7.3	54
29	Sterol biosynthesis in oomycete pathogens. Plant Signaling and Behavior, 2010, 5, 258-260.	2.4	53
30	Genomic Signature of Selective Sweeps Illuminates Adaptation of <i>Medicago truncatula</i> to Root-Associated Microorganisms. Molecular Biology and Evolution, 2015, 32, 2097-2110.	8.9	51
31	Hydrogen peroxide scavenging mechanisms are components of Medicago truncatula partial resistance to Aphanomyces euteiches. European Journal of Plant Pathology, 2011, 131, 559-571.	1.7	49
32	Elicitor Activity of a Fungal Endopolygalacturonase in Tobacco Requires a Functional Catalytic Site and Cell Wall Localization. Plant Physiology, 2003, 131, 93-101.	4.8	48
33	Regulation and role of a STE12-like transcription factor from the plant pathogen Colletotrichum lindemuthianum. Molecular Microbiology, 2007, 64, 68-82.	2.5	47
34	Pathogen-associated molecular pattern-triggered immunity and resistance to the root pathogen Phytophthora parasitica in Arabidopsis. Journal of Experimental Botany, 2013, 64, 3615-3625.	4.8	47
35	AphanoDB: a genomic resource for Aphanomyces pathogens. BMC Genomics, 2007, 8, 471.	2.8	43
36	Isolation and sequence analysis of Clpgl, a gene coding for an endopolygalacturonase of the phytopathogenic fungus Colletotrichum lindemuthianum. Gene, 1996, 170, 125-129.	2.2	42

BERNARD DUMAS

#	Article	IF	CITATIONS
37	Functional analysis ofCLPT1, a Rab/GTPase required for protein secretion and pathogenesis in the plant fungal pathogenColletotrichum lindemuthianum. Journal of Cell Science, 2005, 118, 323-329.	2.0	42
38	Sterol metabolism in the oomycete <i> Aphanomyces euteiches</i> , a legume root pathogen. New Phytologist, 2009, 183, 291-300.	7.3	42
39	Detection of nucleic acid–protein interactions in plant leaves using fluorescence lifetime imaging microscopy. Nature Protocols, 2017, 12, 1933-1950.	12.0	42
40	Aphanomyces euteiches Cell Wall Fractions Containing Novel Glucan-Chitosaccharides Induce Defense Genes and Nuclear Calcium Oscillations in the Plant Host Medicago truncatula. PLoS ONE, 2013, 8, e75039.	2.5	41
41	The unique architecture and function of cellulose-interacting proteins in oomycetes revealed by genomic and structural analyses. BMC Genomics, 2012, 13, 605.	2.8	40
42	Production of a cell wall-associated endopolygalacturonase by Colletotrichum lindemuthianum and pectin degradation during bean infection. Fungal Genetics and Biology, 2004, 41, 140-147.	2.1	37
43	High-throughput gene-expression quantification of grapevine defense responses in the field using microfluidic dynamic arrays. BMC Genomics, 2016, 17, 957.	2.8	37
44	A local score approach improves GWAS resolution and detects minor QTL: application to Medicago truncatula quantitative disease resistance to multiple Aphanomyces euteiches isolates. Heredity, 2019, 123, 517-531.	2.6	36
45	Specific and constitutive expression of oxalate oxidase during the ageing of leaf sheaths of ryegrass stubble. Plant, Cell and Environment, 2001, 24, 1033-1043.	5.7	35
46	Foliar treatments with Gaultheria procumbens essential oil induce defense responses and resistance against a fungal pathogen in Arabidopsis. Frontiers in Plant Science, 2014, 5, 477.	3.6	29
47	Phyllosphere Colonization by a Soil <i>Streptomyces</i> sp. Promotes Plant Defense Responses Against Fungal Infection. Molecular Plant-Microbe Interactions, 2020, 33, 223-234.	2.6	29
48	Cellulose-binding domains: cellulose associated-defensive sensing partners?. Trends in Plant Science, 2008, 13, 160-164.	8.8	28
49	An experimental system to study responses of Medicago truncatula roots to chitin oligomers of high degree of polymerization and other microbial elicitors. Plant Cell Reports, 2013, 32, 489-502.	5.6	26
50	Transcriptomic approaches to unravel plant–pathogen interactions in legumes. Euphytica, 2006, 147, 25-36.	1.2	25
51	MtNF-YA1, A Central Transcriptional Regulator of Symbiotic Nodule Development, Is Also a Determinant of Medicago truncatula Susceptibility toward a Root Pathogen. Frontiers in Plant Science, 2016, 7, 1837.	3.6	25
52	Lipo hitooligosaccharide signalling blocks a rapid pathogenâ€induced <scp>ROS</scp> burst without impeding immunity. New Phytologist, 2019, 221, 743-749.	7.3	24
53	An <i>STE12</i> gene identified in the mycorrhizal fungus <i>Glomus intraradices</i> restores infectivity of a hemibiotrophic plant pathogen. New Phytologist, 2009, 181, 693-707.	7.3	23
54	Purification of tobacco O-methyltransferases by affinity chromatography and estimation of the rate of synthesis of the enzymes during hypersensitive reaction to virus infection. Planta, 1988, 176, 36-41.	3.2	21

BERNARD DUMAS

#	Article	IF	CITATIONS
55	One-step purification and characterization of a lignin-specific O-methyltransferase from poplar. Gene, 1993, 133, 213-217.	2.2	21
56	Molecular characterization of CLPT1 , a SEC4 -like Rab/GTPase of the phytopathogenic fungus Colletotrichum lindemuthianum which is regulated by the carbon source. Gene, 2001, 272, 219-225.	2.2	21
57	A cis-Acting Sequence Homologous to the Yeast Filamentation and Invasion Response Element Regulates Expression of a Pectinase Gene from the Bean PathogenColletotrichum lindemuthianum. Journal of Biological Chemistry, 2002, 277, 29125-29131.	3.4	21
58	Transcriptome analysis highlights preformed defences and signalling pathways controlled by the <i>pr<scp>A</scp>e1</i> quantitative trait locus (<scp>QTL</scp>), conferring partial resistance to <i><scp>A</scp>phanomyces euteiches</i> in <i><scp>M</scp>edicago truncatula</i> . Molecular Plant Pathology, 2015, 16, 973-986.	4.2	18
59	Long-Read Genome Sequence of the Sugar Beet Rhizosphere Mycoparasite <i>Pythium oligandrum</i> . G3: Genes, Genomes, Genetics, 2020, 10, 431-436.	1.8	18
60	Host and Nonhost Resistance in Medicago–Colletotrichum Interactions. Molecular Plant-Microbe Interactions, 2010, 23, 1107-1117.	2.6	15
61	Deciphering the phylogeny of violets based on multiplexed genetic and metabolomic approaches. Phytochemistry, 2019, 163, 99-110.	2.9	14
62	DNA-Damaging Effectors: New Players in the Effector Arena. Trends in Plant Science, 2019, 24, 1094-1101.	8.8	13
63	An oomycete effector targets a plant RNA helicase involved in root development and defense. New Phytologist, 2022, 233, 2232-2248.	7.3	12
64	Expression and purification of a biologically active Phytophthora parasitica cellulose binding elicitor lectin in Pichia pastoris. Protein Expression and Purification, 2011, 80, 217-223.	1.3	10
65	Probing the Functions of Carbohydrate Binding Modules in the CBEL Protein from the Oomycete Phytophthora parasitica. PLoS ONE, 2015, 10, e0137481.	2.5	9
66	Modification of Early Response of Vitis vinifera to Pathogens Relating to Esca Disease and Biocontrol Agent Vintec® Revealed By Untargeted Metabolomics on Woody Tissues. Frontiers in Microbiology, 2022, 13, 835463.	3.5	6
67	A Comprehensive Assessment of the Secretome Responsible for Host Adaptation of the Legume Root Pathogen Aphanomyces euteiches. Journal of Fungi (Basel, Switzerland), 2022, 8, 88.	3.5	4
68	Plant Genes Involved in Resistance to Viruses. , 1991, , 153-166.		1
69	Molecular characterization and expression of Colletotrichum lindemuthianum genes encoding endopolygalacturonase. Progress in Biotechnology, 1996, 14, 369-376.	0.2	0

70 Aphanomyces euteiches and Legumes. , 0, , 345-360.