Antony Giuseppe Galione

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4374573/publications.pdf

Version: 2024-02-01

98 papers 7,447 citations

45 h-index 54797 84 g-index

146 all docs

146
docs citations

146 times ranked 6897 citing authors

#	Article	IF	CITATIONS
1	Acidic Ca2+ stores and immune-cell function. Cell Calcium, 2022, 101, 102516.	1.1	12
2	Current methods to analyze lysosome morphology, positioning, motility and function. Traffic, 2022, 23, 238-269.	1.3	37
3	A cellular protection racket: How lysosomal Ca2+ fluxes prevent kidney injury. Cell Calcium, 2021, 93, 102328.	1.1	O
4	Oxytocin Influences Male Sexual Activity via Non-synaptic Axonal Release in the Spinal Cord. Current Biology, 2021, 31, 103-114.e5.	1.8	45
5	Adenosine integrates light and sleep signalling for the regulation of circadian timing in mice. Nature Communications, 2021, 12, 2113.	5.8	66
6	A tribute to Professor Sir Michael J. Berridge FRS (1938–2020). Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119014.	1.9	2
7	Glucose and NAADP trigger elementary intracellular \hat{l}^2 -cell Ca2+ signals. Scientific Reports, 2021, 11, 10714.	1.6	9
8	Choreographing endo-lysosomal Ca2+ throughout the life of a phagosome. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119040.	1.9	10
9	Acetylation turns leucine into a drug by membrane transporter switching. Scientific Reports, 2021, 11, 15812.	1.6	16
10	A modified density gradient proteomic-based method to analyze endolysosomal proteins in cardiac tissue. IScience, 2021, 24, 102949.	1.9	1
11	Mechanistic convergence and shared therapeutic targets in Niemannâ€Pick disease. Journal of Inherited Metabolic Disease, 2020, 43, 574-585.	1.7	13
12	Does lysosomal rupture evoke Ca2+ release? A question of pores and stores. Cell Calcium, 2020, 86, 102139.	1.1	18
13	<scp>NAADP</scp> â€regulated twoâ€pore channels drive phagocytosis through endoâ€lysosomal Ca ²⁺ nanodomains, calcineurin and dynamin. EMBO Journal, 2020, 39, e104058.	3.5	54
14	Lysosomal agents inhibit store-operated Ca2+ entry. Journal of Cell Science, 2020, 134, .	1.2	2
15	Defective platelet function in <scp>Niemannâ€Pick</scp> disease type <scp>C1</scp> . JIMD Reports, 2020, 56, 46-57.	0.7	9
16	Unexpected differences in the pharmacokinetics of N-acetyl-DL-leucine enantiomers after oral dosing and their clinical relevance. PLoS ONE, 2020, 15, e0229585.	1.1	21
17	A two-pore channel protein required for regulating mTORC1 activity on starvation. BMC Biology, 2020, 18, 8.	1.7	16
18	Pyridine Nucleotide Metabolites and Calcium Release from Intracellular Stores. Advances in Experimental Medicine and Biology, 2020, 1131, 371-394.	0.8	15

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 15, e0229585.		O
20	Title is missing!. , 2020, 15, e0229585.		0
21	Title is missing!. , 2020, 15, e0229585.		0
22	Title is missing!. , 2020, 15, e0229585.		0
23	NAADP Receptors. Cold Spring Harbor Perspectives in Biology, 2019, 11, a035071.	2.3	43
24	A multiscale analysis in CD38 $\langle \sup $ 3°'/â°' $\langle \sup \rangle$ mice unveils major prefrontal cortex dysfunctions. FASEB Journal, 2019, 33, 5823-5835.	0.2	19
25	Characterization of ADP-ribosyl cyclase 1-like (ARC1-like) activity and NAADP signaling during slow muscle cell development in zebrafish embryos. Developmental Biology, 2019, 445, 211-225.	0.9	10
26	TPC2-mediated Ca2+ signaling is required for the establishment of synchronized activity in developing zebrafish primary motor neurons. Developmental Biology, 2018, 438, 57-68.	0.9	10
27	Adrenaline Stimulates Glucagon Secretion by Tpc2-Dependent Ca2+ Mobilization From Acidic Stores in Pancreatic α-Cells. Diabetes, 2018, 67, 1128-1139.	0.3	61
28	Hippocampal mGluR1-dependent long-term potentiation requires NAADP-mediated acidic store Ca ²⁺ signaling. Science Signaling, 2018, 11, .	1.6	41
29	Revealing the secrets of secretion. ELife, 2018, 7, .	2.8	3
30	Optogenetic Control of Heart Rhythm by Selective Stimulation of Cardiomyocytes Derived from Pnmt+Cells in Murine Heart. Scientific Reports, 2017, 7, 40687.	1.6	42
31	Ca 2+ release via two-pore channel type 2 (TPC2) is required for slow muscle cell myofibrillogenesis and myotomal patterning in intact zebrafish embryos. Developmental Biology, 2017, 425, 109-129.	0.9	22
32	Synthesis of the Ca2+-mobilizing messengers NAADP and cADPR by intracellular CD38 enzyme in the mouse heart: Role in \hat{l}^2 -adrenoceptor signaling. Journal of Biological Chemistry, 2017, 292, 13243-13257.	1.6	44
33	High resolution structural evidence suggests the Sarcoplasmic Reticulum forms microdomains with Acidic Stores (lysosomes) in the heart. Scientific Reports, 2017, 7, 40620.	1.6	59
34	Carvedilol Inhibits cADPR- and IP3-Induced Ca2+ Release. Messenger (Los Angeles, Calif: Print), 2016, 5, 92-99.	0.3	3
35	The two pore channel TPC2 is dispensable in pancreatic \hat{l}^2 -cells for normal Ca2+ dynamics and insulin secretion. Cell Calcium, 2016, 59, 32-40.	1.1	26
36	Unveiling (â^')â€Englerinâ€A as a Modulator of Lâ€Type Calcium Channels. Angewandte Chemie, 2016, 128, 11243-11247.	1.6	7

#	Article	IF	CITATIONS
37	Unveiling (â^')â€Englerinâ€A as a Modulator of Lâ€Type Calcium Channels. Angewandte Chemie - International Edition, 2016, 55, 11077-11081.	7.2	37
38	Ebolavirus Glycoprotein Directs Fusion through NPC1 ⁺ Endolysosomes. Journal of Virology, 2016, 90, 605-610.	1.5	67
39	Pathogenic mycobacteria achieve cellular persistence by inhibiting the Niemann-Pick Type C disease cellular pathway. Wellcome Open Research, 2016, 1, 18.	0.9	26
40	Expression of Ca ²⁺ â€permeable twoâ€pore channels rescues <scp>NAADP</scp> signalling in <scp>TPC</scp> â€deficient cells. EMBO Journal, 2015, 34, 1743-1758.	3.5	144
41	Two-Pore Channels: Lessons from Mutant Mouse Models. Messenger (Los Angeles, Calif: Print), 2015, 4, 4-22.	0.3	22
42	Preferential Coupling of the NAADP Pathway to Exocytosis in T-Cells. Messenger (Los Angeles, Calif:) Tj ETQq0 0 C) rgBT /Ove	erlock 10 Tf 5
43	Intracellular sphingosine releases calcium from lysosomes. ELife, 2015, 4, .	2.8	115
44	TPC: the NAADP discovery channel?. Biochemical Society Transactions, 2015, 43, 384-389.	1.6	41
45	A primer of NAADP-mediated Ca2+ signalling: From sea urchin eggs to mammalian cells. Cell Calcium, 2015, 58, 27-47.	1.1	110
46	Imaging approaches to measuring lysosomal calcium. Methods in Cell Biology, 2015, 126, 159-195.	0.5	36
47	Lysosomal Two-pore Channel Subtype 2 (TPC2) Regulates Skeletal Muscle Autophagic Signaling. Journal of Biological Chemistry, 2015, 290, 3377-3389.	1.6	69
48	Two-pore Channels (TPC2s) and Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) at Lysosomal-Sarcoplasmic Reticular Junctions Contribute to Acute and Chronic \hat{l}^2 -Adrenoceptor Signaling in the Heart. Journal of Biological Chemistry, 2015, 290, 30087-30098.	1.6	63
49	Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Endolysosomal Two-pore Channels Modulate Membrane Excitability and Stimulus-Secretion Coupling in Mouse Pancreatic \hat{l}^2 Cells. Journal of Biological Chemistry, 2015, 290, 21376-21392.	1.6	48
50	Reply to "TPC1 Knockout Knocks Out TPC1― Molecular and Cellular Biology, 2015, 35, 1884-1884.	1.1	1
51	Synthesis of [³² P]NAADP for the Radioreceptor Binding Assay. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot076919.	0.2	1
52	Preparation and Use of Sea Urchin Egg Homogenates for Studying NAADP-Mediated Ca2+ Release. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot076901-pdb.prot076901.	0.2	6
53	Identification of a Novel Gene for Diabetic Traits in Rats, Mice, and Humans. Genetics, 2014, 198, 17-29.	1.2	44
54	Reconstituted Human TPC1 Is a Proton-Permeable Ion Channel and Is Activated by NAADP or Ca ²⁺ . Science Signaling, 2014, 7, ra46.	1.6	79

#	Article	IF	Citations
55	VEGF-induced neoangiogenesis is mediated by NAADP and two-pore channel-2–dependent Ca ²⁺ signaling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4706-15.	3.3	138
56	Synthesis of Caged NAADP. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot076943-pdb.prot076943.	0.2	0
57	TPC1 Has Two Variant Isoforms, and Their Removal Has Different Effects on Endo-Lysosomal Functions Compared to Loss of TPC2. Molecular and Cellular Biology, 2014, 34, 3981-3992.	1.1	76
58	Synthesis of NAADP-AM as a Membrane-Permeant NAADP Analog. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot076927.	0.2	3
59	Measurement of Luminal pH of Acidic Stores as a Readout for NAADP Action. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot076935.	0.2	1
60	Bidirectional Ca2+ signaling occurs between the endoplasmic reticulum and acidic organelles. Journal of Cell Biology, 2013, 200, 789-805.	2.3	137
61	A novel signalling role for NAADP in arterial smooth muscle. FASEB Journal, 2013, 27, 877.5.	0.2	О
62	Pyridine Nucleotide Metabolites and Calcium Release from Intracellular Stores. Advances in Experimental Medicine and Biology, 2012, 740, 305-323.	0.8	10
63	NAADP Activates Two-Pore Channels on T Cell Cytolytic Granules to Stimulate Exocytosis and Killing. Current Biology, 2012, 22, 2331-2337.	1.8	121
64	Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. Biochemical Journal, 2011, 439, 349-378.	1.7	329
65	Physiological roles of NAADP-mediated Ca2+ signaling. Science China Life Sciences, 2011, 54, 725-732.	2.3	26
66	NAADP Receptors. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004036-a004036.	2.3	52
67	Two-pore Channels Form Homo- and Heterodimers. Journal of Biological Chemistry, 2011, 286, 37058-37062.	1.6	51
68	NAADP as an intracellular messenger regulating lysosomal calcium-release channels. Biochemical Society Transactions, 2010, 38, 1424-1431.	1.6	91
69	The Ecto-enzyme CD38 Is a Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Synthase That Couples Receptor Activation to Ca2+ Mobilization from Lysosomes in Pancreatic Acinar Cells. Journal of Biological Chemistry, 2010, 285, 38251-38259.	1.6	94
70	Ca2+ Release from the Endoplasmic Reticulum of NY-ESO-1â€"Specific T Cells Is Modulated by the Affinity of TCR and by the Use of the CD8 Coreceptor. Journal of Immunology, 2010, 184, 1829-1839.	0.4	36
71	An emerging role for NAADP-mediated Ca $<$ sup $>$ 2+ $<$ /sup $>$ signaling in the pancreatic \hat{I}^2 -cell. Islets, 2010, 2, 323-330.	0.9	29
72	Calcium signaling via two-pore channels: local or global, that is the question. American Journal of Physiology - Cell Physiology, 2010, 298, C430-C441.	2.1	117

#	Article	IF	CITATIONS
73	The acid test: the discovery of two-pore channels (TPCs) as NAADP-gated endolysosomal Ca2+ release channels. Pflugers Archiv European Journal of Physiology, 2009, 458, 869-876.	1.3	86
74	NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature, 2009, 459, 596-600.	13.7	687
7 5	Identification of a chemical probe for NAADP by virtual screening. Nature Chemical Biology, 2009, 5, 220-226.	3.9	274
76	NAADP-mediated channel â€~chatter' in neurons of the rat medulla oblongata. Biochemical Journal, 2009, 419, 91-99.	1.7	53
77	Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nature Medicine, 2008, 14, 1247-1255.	15.2	730
78	Cell-permeant NAADP: A novel chemical tool enabling the study of Ca2+ signalling in intact cells. Cell Calcium, 2008, 43, 531-538.	1.1	73
79	NAADP as a second messenger: neither CD38 nor base-exchange reaction are necessary for in vivo generation of NAADP in myometrial cells. American Journal of Physiology - Cell Physiology, 2007, 292, C227-C239.	2.1	96
80	NAADP receptors. Cell Calcium, 2005, 38, 273-280.	1.1	51
81	The NAADP Receptor: New Receptors or New Regulation?. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2005, 5, 73-79.	3.4	94
82	Organelle Selection Determines Agonist-specific Ca2+ Signals in Pancreatic Acinar and \hat{l}^2 Cells. Journal of Biological Chemistry, 2004, 279, 7234-7240.	1.6	192
83	NAADP. Current Biology, 2003, 13, 247-251.	1.8	159
84	NAADP Mobilizes Ca2+ from Reserve Granules, Lysosome-Related Organelles, in Sea Urchin Eggs. Cell, 2002, 111, 703-708.	13.5	442
85	Pharmacological characterization of the putative cADP-ribose receptor. Biochemical Journal, 2001, 359, 451-457.	1.7	30
86	Unique kinetics of nicotinic acid–adenine dinucleotide phosphate (NAADP) binding enhance the sensitivity of NAADP receptors for their ligand. Biochemical Journal, 2000, 352, 725-729.	1.7	51
87	Widespread Distribution of Binding Sites for the Novel Ca2+-mobilizing Messenger, Nicotinic Acid Adenine Dinucleotide Phosphate, in the Brain. Journal of Biological Chemistry, 2000, 275, 36495-36497.	1.6	57
88	Spatial Control of Ca2+ Signaling by Nicotinic Acid Adenine Dinucleotide Phosphate Diffusion and Gradients. Journal of Biological Chemistry, 2000, 275, 38687-38692.	1.6	81
89	Coordination of agonist-induced Ca2+-signalling patterns by NAADP in pancreatic acinar cells. Nature, 1999, 398, 74-76.	13.7	377
90	Nicotinic acid adenine dinucleotide phosphate triggers Ca2+ release from brain microsomes. Current Biology, 1999, 9, 751-754.	1.8	98

#	Article	IF	CITATIONS
91	Effects of photoreleased cADP-ribose on calcium transients and calcium sparks in myocytes isolated from guinea-pig and rat ventricle. Biochemical Journal, 1999, 342, 269-273.	1.7	71
92	Actions of cADP-Ribose and Its Antagonists on Contraction in Guinea Pig Isolated Ventricular Myocytes. Circulation Research, 1997, 81, 879-884.	2.0	62
93	Cyclic aristeromycin diphosphate ribose: A potent and poorly hydrolysable Ca2+-mobilising mimic of cyclic adenosine diphosphate ribose. FEBS Letters, 1996, 379, 227-230.	1.3	63
94	Unique Inactivation Properties of NAADP-sensitive Ca2+ Release. Journal of Biological Chemistry, 1996, 271, 11599-11602.	1.6	153
95	cGMP mobilizes intracellular Ca2+ in sea urchin eggs by stimulating cyclic ADP-ribose synthesis. Nature, 1993, 365, 456-459.	13.7	343
96	Cyclic ADP-ribose-induced Ca2+release from rat brain microsomes. FEBS Letters, 1993, 318, 259-263.	1.3	106
97	AMP-Activated Protein Kinase Couples Mitochondrial Inhibition by Hypoxia to Cell-Specific Ca2+ Signalling Mechanisms in Oxygensensing Cells. Novartis Foundation Symposium, 0, , 234-258.	1.2	19
98	Pathogenic mycobacteria achieve cellular persistence by inhibiting the Niemann-Pick Type C disease cellular pathway. Wellcome Open Research, 0, 1, 18.	0.9	30