
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4374004/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determination of Size and Concentration of Gold Nanoparticles from UVâ^'Vis Spectra. Analytical Chemistry, 2007, 79, 4215-4221.	6.5	3,008
2	Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chemical Reviews, 2014, 114, 7610-7630.	47.7	2,201
3	Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale, 2018, 10, 12871-12934.	5.6	1,115
4	Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale, 2014, 6, 11553-11573.	5.6	475
5	Development of an Aggregation-Based Immunoassay for Anti-Protein A Using Gold Nanoparticles. Analytical Chemistry, 2002, 74, 1624-1628.	6.5	473
6	Nanoparticles-based magnetic and photo induced hyperthermia for cancer treatment. Nano Today, 2019, 29, 100795.	11.9	174
7	Doxorubicin loaded dual pH- and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications. Nanoscale, 2016, 8, 12152-12161.	5.6	173
8	Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents. Nanoscale, 2016, 8, 3278-3287.	5.6	173
9	Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions. Nanoscale, 2015, 7, 19596-19610.	5.6	140
10	Unravelling the growth mechanism of the co-precipitation of iron oxide nanoparticles with the aid of synchrotron X-Ray diffraction in solution. Nanoscale, 2019, 11, 6620-6628.	5.6	122
11	Fine-tuning of gold nanorod dimensions and plasmonic properties using the Hofmeister effects. Journal of Materials Chemistry C, 2016, 4, 53-61.	5.5	102
12	Synthesis and Characterization of Magnetic Nanoalloys from Bimetallic Carbonyl Clusters. Chemistry of Materials, 2009, 21, 3021-3026.	6.7	99
13	Elucidating the morphological and structural evolution of iron oxide nanoparticles formed by sodium carbonate in aqueous medium. Journal of Materials Chemistry, 2012, 22, 12498.	6.7	93
14	Co-precipitation synthesis of stable iron oxide nanoparticles with NaOH: New insights and continuous production via flow chemistry. Chemical Engineering Journal, 2020, 399, 125740.	12.7	88
15	Nanoparticles Based Stem Cell Tracking in Regenerative Medicine. Theranostics, 2013, 3, 573-582.	10.0	85
16	Real-time tracking of delayed-onset cellular apoptosis induced by intracellular magnetic hyperthermia. Nanomedicine, 2016, 11, 121-136.	3.3	82
17	Whither Magnetic Hyperthermia? A Tentative Roadmap. Materials, 2021, 14, 706.	2.9	76
18	Sensing of circulating cancer biomarkers with metal nanoparticles. Nanoscale, 2019, 11, 22152-22171.	5.6	68

#	Article	IF	CITATIONS
19	Synthesis of nanoparticles for biomedical applications. Annual Reports on the Progress of Chemistry Section A, 2010, 106, 553.	0.8	66
20	Tracking stem cells in tissue-engineered organs using magnetic nanoparticles. Nanoscale, 2013, 5, 11362.	5.6	66
21	Synthesis of silver nanoparticles in a microfluidic coaxial flow reactor. RSC Advances, 2015, 5, 95585-95591.	3.6	61
22	Assessing cell-nanoparticle interactions by high content imaging of biocompatible iron oxide nanoparticles as potential contrast agents for magnetic resonance imaging. Scientific Reports, 2017, 7, 7850.	3.3	57
23	An engineering approach to synthesis of gold and silver nanoparticles by controlling hydrodynamics and mixing based on a coaxial flow reactor. Nanoscale, 2017, 9, 14149-14161.	5.6	48
24	Variant shape growth of nanoparticles of metallic Fe–Pt, Fe–Pd and Fe–Pt–Pd alloys. CrystEngComm, 2009, 11, 1309.	2.6	47
25	Unusual switchable peroxidase-mimicking nanozyme for the determination of proteolytic biomarker. Nano Research, 2019, 12, 509-516.	10.4	45
26	Emergence of Multicolor Photoluminescence in La _{0.67} Sr _{0.33} MnO ₃ Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 25623-25629.	3.1	37
27	A titanium dioxide/nitrogen-doped graphene quantum dot nanocomposite to mitigate cytotoxicity: synthesis, characterisation, and cell viability evaluation. RSC Advances, 2020, 10, 21795-21805.	3.6	36
28	Rapid synthesis of gold nanoparticles with carbon monoxide in a microfluidic segmented flow system. Reaction Chemistry and Engineering, 2019, 4, 884-890.	3.7	35
29	Synthesis of Fine-Tuning Highly Magnetic Fe@Fe _{<i>x</i>} O _{<i>y</i>} Nanoparticles through Continuous Injection and a Study of Magnetic Hyperthermia. Chemistry of Materials, 2018, 30, 8897-8904.	6.7	32
30	Small iron oxide nanoparticles as MRI <i>T</i> ₁ contrast agent: scalable inexpensive water-based synthesis using a flow reactor. Nanoscale, 2021, 13, 8795-8805.	5.6	32
31	A plasmonic nanosensor with inverse sensitivity for circulating cell-free DNA quantification. Chemical Communications, 2015, 51, 14524-14527.	4.1	30
32	Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality. Nanoscale, 2022, 14, 3658-3697.	5.6	30
33	Stable Iron Oxide Nanoflowers with Exceptional Magnetic Heating Efficiency: Simple and Fast Polyol Synthesis. ACS Applied Materials & Interfaces, 2021, 13, 45870-45880.	8.0	28
34	Clustering superparamagnetic iron oxide nanoparticles produces organ-targeted high-contrast magnetic resonance images. Nanomedicine, 2019, 14, 1135-1152.	3.3	25
35	Current advances in the detection of COVID-19 and evaluation of the humoral response. Analyst, The, 2021, 146, 382-402.	3.5	25
36	Synthesis of size-tuneable β-FeOOH nanoellipsoids and a study of their morphological and compositional changes by reduction. CrystEngComm, 2019, 21, 1293-1301.	2.6	24

#	Article	IF	CITATIONS
37	Protein A-conjugated iron oxide nanoparticles for separation of <i>Vibrio cholerae</i> from water samples. Faraday Discussions, 2014, 175, 73-82.	3.2	21
38	Synthesis of silver nanoparticles using a microfluidic impinging jet reactor. Journal of Flow Chemistry, 2016, 6, 268-278.	1.9	21
39	Tunable plasmonic colorimetric assay with inverse sensitivity for extracellular DNA quantification. Chemical Communications, 2018, 54, 11260-11263.	4.1	21
40	Enhanced photodynamic therapy and fluorescence imaging using gold nanorods for porphyrin delivery in a novel <i>in vitro</i> squamous cell carcinoma 3D model. Journal of Materials Chemistry B, 2020, 8, 5131-5142.	5.8	21
41	Continuous production of iron oxide nanoparticles <i>via</i> fast and economical high temperature synthesis. Reaction Chemistry and Engineering, 2020, 5, 1474-1483.	3.7	21
42	Rapid Millifluidic Synthesis of Stable High Magnetic Moment Fe _{<i>x</i>} C _{<i>y</i>} Nanoparticles for Hyperthermia. ACS Applied Materials & Interfaces, 2020, 12, 28520-28531.	8.0	20
43	A Modular Millifluidic Platform for the Synthesis of Iron Oxide Nanoparticles with Control over Dissolved Gas and Flow Configuration. Materials, 2020, 13, 1019.	2.9	19
44	Fluorescence sensing of protein-DNA interactions using conjugated polymers and graphene oxide. Sensors and Actuators B: Chemical, 2018, 271, 97-103.	7.8	17
45	SELECTIVE RECOGNITION OF CYCLIC GMP USING A FLUORESCENCE-BASED MOLECULARLY IMPRINTED POLYMER. Analytical Letters, 2002, 35, 2499-2509.	1.8	16
46	Laser-based double beam absorption detection for aggregation immunoassays using gold nanoparticles. Analytical and Bioanalytical Chemistry, 2002, 374, 1174-1178.	3.7	16
47	High magnetisation, monodisperse and water-dispersible CoFe@Pt core/shell nanoparticles. Nanoscale, 2017, 9, 8952-8961.	5.6	16
48	A new insight into the thermodynamical criterion for the preparation of semiconductor and metal nanocrystals using a polymerized complexing method. Physical Chemistry Chemical Physics, 2017, 19, 24742-24751.	2.8	16
49	Study of the Effect of Anisotropic Gold Nanoparticles on Plasmonic Coupling with a Photosensitizer for Antimicrobial Film. ACS Applied Bio Materials, 2020, 3, 315-326.	4.6	16
50	Quantification of Lipoprotein Uptake <i>in Vivo</i> Using Magnetic Particle Imaging and Spectroscopy. ACS Nano, 2021, 15, 434-446.	14.6	16
51	The Role of Anisotropy in Distinguishing Domination of Néel or Brownian Relaxation Contribution to Magnetic Inductive Heating: Orientations for Biomedical Applications. Materials, 2021, 14, 1875.	2.9	16
52	New insight into the effect of mass transfer on the synthesis of silver and gold nanoparticles. CrystEngComm, 2018, 20, 7082-7093.	2.6	15
53	Gold Nanorods Embedded in Polymeric Film for Killing Bacteria by Generating Reactive Oxygen Species with Light. ACS Applied Bio Materials, 2019, 2, 3059-3067.	4.6	15
54	Shape controlled iron oxide nanoparticles: inducing branching and controlling particle crystallinity. CrystEngComm, 2021, 23, 550-561.	2.6	15

#	Article	IF	CITATIONS
55	Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles. Nanoscale, 2022, 14, 4690-4704.	5.6	15
56	A plasmonic multi-logic gate platform based on sequence-specific binding of estrogen receptors and gold nanorods. Nanoscale, 2016, 8, 19973-19977.	5.6	14
57	Development and Characterization of Curcumin-Silver Nanoparticles as a Promising Formulation to Test on Human Pterygium-Derived Keratinocytes. Molecules, 2022, 27, 282.	3.8	13
58	Multilayered nanocoatings incorporating superparamagnetic nanoparticles for tracking of pancreatic islet transplants with magnetic resonance imaging. Chemical Communications, 2013, 49, 7255.	4.1	12
59	DMSA-coated cubic iron oxide nanoparticles as potential therapeutic agents. Nanomedicine, 2021, 16, 925-941.	3.3	12
60	Urinary lipid changes during the development of chemically-induced renal papillary necrosis: a study using mefenamic acid andN-phenylanthranilic acid. Biomarkers, 2001, 6, 417-427.	1.9	11
61	<i>In vitro</i> exploration of the synergistic effect of alternating magnetic field mediated thermo–chemotherapy with doxorubicin loaded dual pH- and thermo-responsive magnetic nanocomposite carriers. Journal of Materials Chemistry B, 2020, 8, 10527-10539.	5.8	11
62	Iron Oxide Nanoparticles: Tunable Size Synthesis and Analysis in Terms of the Core–Shell Structure and Mixed Coercive Model. Journal of Electronic Materials, 2017, 46, 2533-2539.	2.2	10
63	N-Doped Graphene Quantum Dots/Titanium Dioxide Nanocomposites: A Study of ROS-Forming Mechanisms, Cytotoxicity and Photodynamic Therapy. Biomedicines, 2022, 10, 421.	3.2	10
64	Functional nanoparticles for biomedical applications. Nanoscale, 2013, 5, 11338.	5.6	8
65	Quantifying the binding between proteins and open chromatin-like DNA sequences with gold nanorods. Chemical Communications, 2019, 55, 15041-15044.	4.1	8
66	Development of an in-line magnetometer for flow chemistry and its demonstration for magnetic nanoparticle synthesis. Lab on A Chip, 2021, 21, 3775-3783.	6.0	7
67	Structure Differentiation of Hydrophilic Brass Nanoparticles Using a Polyol Toolbox. Frontiers in Chemistry, 2019, 7, 817.	3.6	6
68	Engineering hydrogel nanoparticles to enhance transdermal local anaesthetic delivery in human eyelid skin. RSC Advances, 2020, 10, 3926-3930.	3.6	6
69	Fouling-proof triple stream 3D flow focusing based reactor: Design and demonstration for iron oxide nanoparticle co-precipitation synthesis. Chemical Engineering Science, 2022, 251, 117481.	3.8	6
70	Heat-Up Colloidal Synthesis of Shape-Controlled Cu-Se-S Nanostructures—Role of Precursor and Surfactant Reactivity and Performance in N2 Electroreduction. Nanomaterials, 2021, 11, 3369.	4.1	6
71	Hydroxypropylcellulose Coating to Improve Graft-to-Bone Healing for Anterior Cruciate Ligament Reconstruction. ACS Biomaterials Science and Engineering, 2019, 5, 1793-1803.	5.2	5
72	High pressure synthesis of FePt nanoparticles with controlled morphology and Fe content. RSC Advances, 2014, 4, 1168-1173.	3.6	4

#	Article	IF	CITATIONS
73	Facile aqueous, room temperature preparation of high transverse relaxivity clustered iron oxide nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570, 165-171.	4.7	4
74	Hybrid Plasmonics and Two-Dimensional Materials: Theory and Applications. Journal of Molecular and Engineering Materials, 2020, 08, 2030001.	1.8	4
75	Introduction to advanced functional nanomaterials for biomedical applications. Nanoscale, 2022, 14, 7441-7443.	5.6	4
76	Dimpled SiO2@γ-Fe2O3 nanocomposites – fabrication and use for arsenic adsorption in aqueous medium. RSC Advances, 2021, 11, 1343-1353.	3.6	3
77	RECENT DEVELOPMENT FOR SYNTHESIS OF MAGNETIC NANOPARTICLES FOR BIOMEDICAL APPLICATIONS. International Journal of Nanoscience, 2011, 10, 883-890.	0.7	2
78	Environmental STEM Study of the Oxidation Mechanism for Iron and Iron Carbide Nanoparticles. Materials, 2022, 15, 1557.	2.9	2