Scott L O'neill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4373902/publications.pdf Version: 2024-02-01

SCOTT LO'NEUL

#	Article	IF	CITATIONS
1	Trash to Treasure: How Insect Protein and Waste Containers Can Improve the Environmental Footprint of Mosquito Egg Releases. Pathogens, 2022, 11, 373.	2.8	1
2	Aedes aegypti abundance and insecticide resistance profiles in the Applying Wolbachia to Eliminate Dengue trial. PLoS Neglected Tropical Diseases, 2022, 16, e0010284.	3.0	6
3	Transient Introgression of Wolbachia into Aedes aegypti Populations Does Not Elicit an Antibody Response to Wolbachia Surface Protein in Community Members. Pathogens, 2022, 11, 535.	2.8	2
4	The Metabolic Response to Infection With Wolbachia Implicates the Insulin/Insulin-Like-Growth Factor and Hypoxia Signaling Pathways in Drosophila melanogaster. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	6
5	Efficacy of Wolbachia-Infected Mosquito Deployments for the Control of Dengue. New England Journal of Medicine, 2021, 384, 2177-2186.	27.0	289
6	Detection and Identification of Wolbachia pipientis Strains in Mosquito Eggs Using Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy. Applied Spectroscopy, 2021, 75, 1003-1011.	2.2	1
7	Effectiveness of Wolbachia-infected mosquito deployments in reducing the incidence of dengue and other Aedes-borne diseases in Niterói, Brazil: A quasi-experimental study. PLoS Neglected Tropical Diseases, 2021, 15, e0009556.	3.0	93
8	Large-Scale Deployment and Establishment of Wolbachia Into the Aedes aegypti Population in Rio de Janeiro, Brazil. Frontiers in Microbiology, 2021, 12, 711107.	3.5	30
9	wMel Wolbachia genome remains stable after 7 years in Australian Aedes aegypti field populations. Microbial Genomics, 2021, 7, .	2.0	9
10	Novel phenotype of Wolbachia strain wPip in Aedes aegypti challenges assumptions on mechanisms of Wolbachia-mediated dengue virus inhibition. PLoS Pathogens, 2020, 16, e1008410.	4.7	36
11	Update to the AWED (Applying Wolbachia to Eliminate Dengue) trial study protocol: a cluster randomised controlled trial in Yogyakarta, Indonesia. Trials, 2020, 21, 429.	1.6	37
12	Multiple Wolbachia strains provide comparative levels of protection against dengue virus infection in Aedes aegypti. PLoS Pathogens, 2020, 16, e1008433.	4.7	57
13	Stable establishment of wMel Wolbachia in Aedes aegypti populations in Yogyakarta, Indonesia. PLoS Neglected Tropical Diseases, 2020, 14, e0008157.	3.0	74
14	How to engage communities on a large scale? Lessons from World Mosquito Program in Rio de Janeiro, Brazil. Gates Open Research, 2020, 4, 109.	1.1	11
15	Reduced dengue incidence following deployments of Wolbachia-infected Aedes aegypti in Yogyakarta, Indonesia: a quasi-experimental trial using controlled interrupted time series analysis. Gates Open Research, 2020, 4, 50.	1.1	104
16	How to engage communities on a large scale? Lessons from World Mosquito Program in Rio de Janeiro, Brazil. Gates Open Research, 2020, 4, 109.	1.1	13
17	Detecting wMel Wolbachia in field-collected Aedes aegypti mosquitoes using loop-mediated isothermal amplification (LAMP). Parasites and Vectors, 2019, 12, 404.	2.5	27
18	Wolbachia introduction into Lutzomyia longipalpis (Diptera: Psychodidae) cell lines and its effects on immune-related gene expression and interaction with Leishmania infantum. Parasites and Vectors, 2019, 12, 33.	2.5	24

#	Article	IF	CITATIONS
19	Matching the genetics of released and local Aedes aegypti populations is critical to assure Wolbachia invasion. PLoS Neglected Tropical Diseases, 2019, 13, e0007023.	3.0	125
20	Differential suppression of persistent insect specific viruses in trans-infected wMel and wMelPop-CLA Aedes-derived mosquito lines. Virology, 2019, 527, 141-145.	2.4	16
21	The impact of large-scale deployment of Wolbachia mosquitoes on arboviral disease incidence in Rio de Janeiro and Niterói, Brazil: study protocol for a controlled interrupted time series analysis using routine disease surveillance data. F1000Research, 2019, 8, 1328.	1.6	8
22	The impact of large-scale deployment of Wolbachia mosquitoes on dengue and other Aedes-borne diseases in Rio de Janeiro and Niterói, Brazil: study protocol for a controlled interrupted time series analysis using routine disease surveillance data. F1000Research, 2019, 8, 1328.	1.6	8
23	Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia. Gates Open Research, 2019, 3, 1547.	1.1	160
24	Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia. Gates Open Research, 2019, 3, 1547.	1.1	157
25	The impact of city-wide deployment of Wolbachia-carrying mosquitoes on arboviral disease incidence in MedellÃn and Bello, Colombia: study protocol for an interrupted time-series analysis and a test-negative design study. F1000Research, 2019, 8, 1327.	1.6	8
26	Field- and clinically derived estimates of <i>Wolbachia</i> -mediated blocking of dengue virus transmission potential in <i>Aedes aegypti</i> mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 361-366.	7.1	101
27	<i>Wolbachia</i> infection alters the relative abundance of resident bacteria in adult <i>Aedes aegypti</i> mosquitoes, but not larvae. Molecular Ecology, 2018, 27, 297-309.	3.9	85
28	Epidemiological, Serological, and Virological Features of Dengue in Nha Trang City, Vietnam. American Journal of Tropical Medicine and Hygiene, 2018, 98, 402-409.	1.4	25
29	Scaled deployment of Wolbachia to protect the community from dengue and otherÂAedes transmitted arboviruses. Gates Open Research, 2018, 2, 36.	1.1	133
30	Controlling vector-borne diseases by releasing modified mosquitoes. Nature Reviews Microbiology, 2018, 16, 508-518.	28.6	237
31	The Use of Wolbachia by the World Mosquito Program to Interrupt Transmission of Aedes aegypti Transmitted Viruses. Advances in Experimental Medicine and Biology, 2018, 1062, 355-360.	1.6	101
32	The AWED trial (Applying Wolbachia to Eliminate Dengue) to assess the efficacy of Wolbachia-infected mosquito deployments to reduce dengue incidence in Yogyakarta, Indonesia: study protocol for a cluster randomised controlled trial. Trials, 2018, 19, 302.	1.6	60
33	Cluster-Randomized Test-Negative Design Trials: A Novel and Efficient Method to Assess the Efficacy of Community-Level Dengue Interventions. American Journal of Epidemiology, 2018, 187, 2021-2028.	3.4	19
34	Wolbachia-mediated virus blocking in mosquito cells is dependent on XRN1-mediated viral RNA degradation and influenced by viral replication rate. PLoS Pathogens, 2018, 14, e1006879.	4.7	58
35	Scaled deployment of Wolbachia to protect the community from dengue and otherÂAedes transmitted arboviruses. Gates Open Research, 2018, 2, 36.	1.1	222
36	Baseline Characterization of Dengue Epidemiology in Yogyakarta City, Indonesia, before a Randomized Controlled Trial of Wolbachia for Arboviral Disease Control. American Journal of Tropical Medicine and Hygiene, 2018, 99, 1299-1307.	1.4	24

#	Article	IF	CITATIONS
37	Manipulation of the manipulators. Nature, 2017, 543, 182-183.	27.8	12
38	Screening of <i>Wolbachia</i> Endosymbiont Infection in <i>Aedes aegypti</i> Mosquitoes Using Attenuated Total Reflection Mid-Infrared Spectroscopy. Analytical Chemistry, 2017, 89, 5285-5293.	6.5	25
39	A highly stable blood meal alternative for rearing Aedes and Anopheles mosquitoes. PLoS Neglected Tropical Diseases, 2017, 11, e0006142.	3.0	18
40	Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti. PLoS Biology, 2017, 15, e2001894.	5.6	202
41	Comparison of Stable and Transient Wolbachia Infection Models in Aedes aegypti to Block Dengue and West Nile Viruses. PLoS Neglected Tropical Diseases, 2017, 11, e0005275.	3.0	48
42	wMel limits zika and chikungunya virus infection in a Singapore Wolbachia-introgressed Ae. aegypti strain, wMel-Sg. PLoS Neglected Tropical Diseases, 2017, 11, e0005496.	3.0	47
43	Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes. PLoS Pathogens, 2017, 13, e1006751.	4.7	103
44	Response to: Comment on Rohrscheib et al. 2016 "Intensity of mutualism breakdown is determined by temperature not amplification of Wolbachia genes". PLoS Pathogens, 2017, 13, e1006521.	4.7	5
45	<i>Wolbachia</i> mosquito control: Tested. Science, 2016, 352, 526-526.	12.6	13
46	Zika control through the bacterium <i>Wolbachia pipientis</i> . Future Microbiology, 2016, 11, 1499-1502.	2.0	8
47	A NativeWolbachiaEndosymbiont Does Not Limit Dengue Virus Infection in the MosquitoAedes notoscriptus(Diptera: Culicidae). Journal of Medical Entomology, 2016, 53, 401-408.	1.8	15
48	Spatial and Temporal Variation in <i>Aedes aegypti</i> and <i>Aedes albopictus</i> (Diptera: Culicidae) Numbers in the Yogyakarta Area of Java, Indonesia, With Implications for <i>Wolbachia</i> Releases. Journal of Medical Entomology, 2016, 53, 188-198.	1.8	15
49	Establishment of a Wolbachia Superinfection in Aedes aegypti Mosquitoes as a Potential Approach for Future Resistance Management. PLoS Pathogens, 2016, 12, e1005434.	4.7	182
50	Intensity of Mutualism Breakdown Is Determined by Temperature Not Amplification of Wolbachia Genes. PLoS Pathogens, 2016, 12, e1005888.	4.7	21
51	Mutual exclusion of Asaia and Wolbachia in the reproductive organs of mosquito vectors. Parasites and Vectors, 2015, 8, 278.	2.5	127
52	Assessing the epidemiological effect of wolbachia for dengue control. Lancet Infectious Diseases, The, 2015, 15, 862-866.	9.1	73
53	The Dengue Stopper. Scientific American, 2015, 312, 72-77.	1.0	6
54	Modeling the impact on virus transmission of <i>Wolbachia</i> -mediated blocking of dengue virus infection of <i>Aedes aegypti</i> . Science Translational Medicine, 2015, 7, 279ra37.	12.4	204

#	Article	IF	CITATIONS
55	Field evaluation of the establishment potential of wmelpop Wolbachia in Australia and Vietnam for dengue control. Parasites and Vectors, 2015, 8, 563.	2.5	173
56	Wolbachia Reduces the Transmission Potential of Dengue-Infected Aedes aegypti. PLoS Neglected Tropical Diseases, 2015, 9, e0003894.	3.0	128
57	High Anti-Viral Protection without Immune Upregulation after Interspecies Wolbachia Transfer. PLoS ONE, 2014, 9, e99025.	2.5	67
58	<i>Wolbachia</i> infection does not alter attraction of the mosquito <i>Aedes (Stegomyia) aegypti</i> to human odours. Medical and Veterinary Entomology, 2014, 28, 457-460.	1.5	6
59	Stability of the wMel Wolbachia Infection following Invasion into Aedes aegypti Populations. PLoS Neglected Tropical Diseases, 2014, 8, e3115.	3.0	261
60	Limited Dengue Virus Replication in Field-Collected Aedes aegypti Mosquitoes Infected with Wolbachia. PLoS Neglected Tropical Diseases, 2014, 8, e2688.	3.0	288
61	<i>Wolbachia</i> small noncoding RNAs and their role in cross-kingdom communications. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18721-18726.	7.1	82
62	Competition for Amino Acids Between Wolbachia and the Mosquito Host, Aedes aegypti. Microbial Ecology, 2014, 67, 205-218.	2.8	133
63	Comparative Susceptibility of Mosquito Populations in North Queensland, Australia to Oral Infection with Dengue Virus. American Journal of Tropical Medicine and Hygiene, 2014, 90, 422-430.	1.4	29
64	Transinfected Wolbachia have minimal effects on male reproductive success in Aedes aegypti. Parasites and Vectors, 2013, 6, 36.	2.5	28
65	Draft genome sequence of the male-killing Wolbachia strain wBol1 reveals recent horizontal gene transfers from diverse sources. BMC Genomics, 2013, 14, 20.	2.8	65
66	<i>Wolbachia</i> uses a host microRNA to regulate transcripts of a methyltransferase, contributing to dengue virus inhibition in <i>Aedes aegypti</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10276-10281.	7.1	188
67	Blood meal induced microRNA regulates development and immune associated genes in the Dengue mosquito vector, Aedes aegypti. Insect Biochemistry and Molecular Biology, 2013, 43, 146-152.	2.7	79
68	Beyond insecticides: new thinking on an ancient problem. Nature Reviews Microbiology, 2013, 11, 181-193.	28.6	319
69	<i>Wolbachia</i> interferes with the intracellular distribution of Argonaute 1 in the dengue vector <i>Aedes aegypti</i> by manipulating the host microRNAs. RNA Biology, 2013, 10, 1868-1875.	3.1	45
70	The Toll and Imd Pathways Are Not Required for Wolbachia-Mediated Dengue Virus Interference. Journal of Virology, 2013, 87, 11945-11949.	3.4	84
71	Dietary Cholesterol Modulates Pathogen Blocking by Wolbachia. PLoS Pathogens, 2013, 9, e1003459.	4.7	232
72	Wolbachia-Associated Bacterial Protection in the Mosquito Aedes aegypti. PLoS Neglected Tropical Diseases, 2013, 7, e2362.	3.0	118

#	Article	IF	CITATIONS
73	Genomic Evolution of the Pathogenic Wolbachia Strain, wMelPop. Genome Biology and Evolution, 2013, 5, 2189-2204.	2.5	96
74	Infection with a Virulent Strain of Wolbachia Disrupts Genome Wide-Patterns of Cytosine Methylation in the Mosquito Aedes aegypti. PLoS ONE, 2013, 8, e66482.	2.5	57
75	The Relative Importance of Innate Immune Priming in Wolbachia-Mediated Dengue Interference. PLoS Pathogens, 2012, 8, e1002548.	4.7	288
76	Impact of Wolbachia on Infection with Chikungunya and Yellow Fever Viruses in the Mosquito Vector Aedes aegypti. PLoS Neglected Tropical Diseases, 2012, 6, e1892.	3.0	334
77	Antiviral Protection and the Importance of Wolbachia Density and Tissue Tropism in Drosophila simulans. Applied and Environmental Microbiology, 2012, 78, 6922-6929.	3.1	191
78	Impacts of <i>Wolbachia</i> Infection on Predator Prey Relationships: Evaluating Survival and Horizontal Transfer Between <i>w</i> MelPop Infected <i>Aedes aegypti</i> and Its Predators: Table 1 Journal of Medical Entomology, 2012, 49, 624-630.	1.8	23
79	Influence of the Virus LbFV and of Wolbachia in a Host-Parasitoid Interaction. PLoS ONE, 2012, 7, e35081.	2.5	26
80	Why do we need alternative tools to control mosquito-borne diseases in Latin America?. Memorias Do Instituto Oswaldo Cruz, 2012, 107, 828-829.	1.6	45
81	Tandem repeat markers as novel diagnostic tools for high resolution fingerprinting of Wolbachia. BMC Microbiology, 2012, 12, S12.	3.3	48
82	The Small Interfering RNA Pathway Is Not Essential for Wolbachia-Mediated Antiviral Protection in Drosophila melanogaster. Applied and Environmental Microbiology, 2012, 78, 6773-6776.	3.1	34
83	A portable approach for the surveillance of dengue virus-infected mosquitoes. Journal of Virological Methods, 2012, 183, 90-93.	2.1	17
84	Wolbachia-Induced aae-miR-12 miRNA Negatively Regulates the Expression of MCT1 and MCM6 Genes in Wolbachia-Infected Mosquito Cell Line. PLoS ONE, 2012, 7, e50049.	2.5	57
85	Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature, 2011, 476, 454-457.	27.8	1,261
86	The w MelPop strain of Wolbachia interferes with dopamine levels in Aedes aegypti. Parasites and Vectors, 2011, 4, 28.	2.5	29
87	Infection with the wMel and wMelPop strains of Wolbachia leads to higher levels of melanization in the hemolymph of Drosophila melanogaster, Drosophila simulans and Aedes aegypti. Developmental and Comparative Immunology, 2011, 35, 360-365.	2.3	48
88	A simple protocol to obtain highly pure Wolbachia endosymbiont DNA for genome sequencing. Journal of Microbiological Methods, 2011, 84, 134-136.	1.6	26
89	A Secure Semi-Field System for the Study of Aedes aegypti. PLoS Neglected Tropical Diseases, 2011, 5, e988.	3.0	56
90	Functional test of the influence of <i>Wolbachia</i> genes on cytoplasmic incompatibility expression in <i>Drosophila melanogaster</i> . Insect Molecular Biology, 2011, 20, 75-85.	2.0	41

#	Article	IF	CITATIONS
91	Improved accuracy of the transcriptional profiling method of age grading in Aedes aegypti mosquitoes under laboratory and semi-field cage conditions and in the presence of Wolbachia infection. Insect Molecular Biology, 2011, 20, 215-224.	2.0	19
92	<i>Wolbachia</i> and the biological control of mosquitoâ€borne disease. EMBO Reports, 2011, 12, 508-518.	4.5	349
93	The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature, 2011, 476, 450-453.	27.8	1,092
94	Identification of Yeast Associated with the Planthopper, Perkinsiella saccharicida: Potential Applications for Fiji Leaf Gall Control. Current Microbiology, 2011, 63, 392-401.	2.2	16
95	A Wolbachia Symbiont in Aedes aegypti Disrupts Mosquito Egg Development to a Greater Extent When Mosquitoes Feed on Nonhuman Versus Human Blood. Journal of Medical Entomology, 2011, 48, 76-84.	1.8	53
96	Variable Infection Frequency and High Diversity of Multiple Strains of <i>Wolbachia pipientis</i> in <i>Perkinsiella</i> Planthoppers. Applied and Environmental Microbiology, 2011, 77, 2165-2168.	3.1	41
97	<i>Wolbachia</i> uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector <i>Aedes aegypti</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9250-9255.	7.1	225
98	Dynamics of the "Popcorn―Wolbachia Infection in Outbred <i>Aedes aegypti</i> Informs Prospects for Mosquito Vector Control. Genetics, 2011, 187, 583-595.	2.9	162
99	Assessing key safety concerns of a Wolbachia-based strategy to control dengue transmission by Aedes mosquitoes. Memorias Do Instituto Oswaldo Cruz, 2010, 105, 957-964.	1.6	68
100	Rapid spread of maleâ€killing <i>Wolbachia</i> in the butterfly <i>Hypolimnas bolina</i> . Journal of Evolutionary Biology, 2010, 23, 231-235.	1.7	34
101	Wolbachia-Mediated Resistance to Dengue Virus Infection and Death at the Cellular Level. PLoS ONE, 2010, 5, e13398.	2.5	168
102	A Virulent Wolbachia Infection Decreases the Viability of the Dengue Vector Aedes aegypti during Periods of Embryonic Quiescence. PLoS Neglected Tropical Diseases, 2010, 4, e748.	3.0	134
103	Investigation of Environmental Influences on a Transcriptional Assay for the Prediction of Age of Aedes aegypti (Diptera: Culicidae) Mosquitoes. Journal of Medical Entomology, 2010, 47, 1044-1052.	1.8	11
104	Male-Killing Wolbachia in the Butterfly Hypolimnas bolina. , 2010, , 209-227.		2
105	Beyond the â€~back yard': Lay knowledge about Aedes aegypti in northern Australia and its implications for policy and practice. Acta Tropica, 2010, 116, 74-80.	2.0	25
106	Field Validation of a Transcriptional Assay for the Prediction of Age of Uncaged Aedes aegypti Mosquitoes in Northern Australia. PLoS Neglected Tropical Diseases, 2010, 4, e608.	3.0	26
107	Wolbachia Infection Reduces Blood-Feeding Success in the Dengue Fever Mosquito, Aedes aegypti. PLoS Neglected Tropical Diseases, 2009, 3, e516.	3.0	161
108	Increased locomotor activity and metabolism of <i>Aedes aegypti</i> infected with a life-shortening strain of <i>Wolbachia pipientis</i> . Journal of Experimental Biology, 2009, 212, 1436-1441.	1.7	97

#	Article	IF	CITATIONS
109	Structural and Functional Characterization of the Oxidoreductase α-DsbA1 from <i>Wolbachia pipientis</i> . Antioxidants and Redox Signaling, 2009, 11, 1485-1500.	5.4	39
110	Variation in Antiviral Protection Mediated by Different Wolbachia Strains in Drosophila simulans. PLoS Pathogens, 2009, 5, e1000656.	4.7	295
111	Evidence for Metabolic Provisioning by a Common Invertebrate Endosymbiont, Wolbachia pipientis, during Periods of Nutritional Stress. PLoS Pathogens, 2009, 5, e1000368.	4.7	306
112	An Ancient Horizontal Gene Transfer between Mosquito and the Endosymbiotic Bacterium Wolbachia pipientis. Molecular Biology and Evolution, 2009, 26, 367-374.	8.9	96
113	Human Probing Behavior of Aedes aegypti when Infected with a Life-Shortening Strain of Wolbachia. PLoS Neglected Tropical Diseases, 2009, 3, e568.	3.0	86
114	Absence of the symbiont <i>Candidatus</i> Midichloria mitochondrii in the mitochondria of the tick <i>lxodes holocyclus</i> . FEMS Microbiology Letters, 2009, 299, 241-247.	1.8	28
115	A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium. Cell, 2009, 139, 1268-1278.	28.9	1,384
116	Stable Introduction of a Life-Shortening <i>Wolbachia</i> Infection into the Mosquito <i>Aedes aegypti</i> . Science, 2009, 323, 141-144.	12.6	790
117	Crystallization and preliminary diffraction analysis of a DsbA homologue fromWolbachia pipientis. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 94-97.	0.7	2
118	<i>Wolbachia</i> and Virus Protection in Insects. Science, 2008, 322, 702-702.	12.6	977
119	Cloning, expression, purification and characterization of a DsbA-like protein from Wolbachia pipientis. Protein Expression and Purification, 2008, 59, 266-273.	1.3	9
120	Guidance for Contained Field Trials of Vector Mosquitoes Engineered to Contain a Gene Drive System: Recommendations of a Scientific Working Group. Vector-Borne and Zoonotic Diseases, 2008, 8, 127-166.	1.5	89
121	Genome Evolution of Wolbachia Strain wPip from the Culex pipiens Group. Molecular Biology and Evolution, 2008, 25, 1877-1887.	8.9	210
122	" <i>Endomicrobia</i> ―and Other Bacteria Associated with the Hindgut of <i>Dermolepida albohirtum</i> Larvae. Applied and Environmental Microbiology, 2008, 74, 762-767.	3.1	17
123	Assessment of Gut Bacteria for a Paratransgenic Approach To Control Dermolepida albohirtum Larvae. Applied and Environmental Microbiology, 2008, 74, 4036-4043.	3.1	22
124	Host Adaptation of a <i>Wolbachia</i> Strain after Long-Term Serial Passage in Mosquito Cell Lines. Applied and Environmental Microbiology, 2008, 74, 6963-6969.	3.1	131
125	In Vitro Rearing of Perkinsiella saccharicida and the Use of Leaf Segments to Assay Fiji disease virus Transmission. Phytopathology, 2008, 98, 810-814.	2.2	5
126	Modifying Insect Population Age Structure to Control Vector-Borne Disease. Advances in Experimental Medicine and Biology, 2008, 627, 126-140.	1.6	94

#	Article	IF	CITATIONS
127	Taxonomic status of the intracellular bacterium Wolbachia pipientis. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 654-657.	1.7	157
128	Male Development Time Influences the Strength of Wolbachia-Induced Cytoplasmic Incompatibility Expression in <i>Drosophila melanogaster</i> . Genetics, 2007, 177, 801-808.	2.9	96
129	Evolutionary dynamics of insect symbiont associations. Trends in Ecology and Evolution, 2007, 22, 625-627.	8.7	19
130	Wolbachia–host interactions: connecting phenotype to genotype. Current Opinion in Microbiology, 2007, 10, 221-224.	5.1	43
131	Predicting the age of mosquitoes using transcriptional profiles. Nature Protocols, 2007, 2, 2796-2806.	12.0	38
132	Wolbachia: Invasion Biology in South Pacific Butterflies. Current Biology, 2007, 17, R220-R221.	3.9	2
133	The Genus Wolbachia. , 2006, , 547-561.		5
134	A Rapid Single-Step Multiplex Method for Discriminating Between Trichogramma (Hymenoptera:) Tj ETQq0 0 0 rg	gBT /Overl 1.8	ock 10 Tf 50
135	The use of transcriptional profiles to predict adult mosquito age under field conditions. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18060-18065.	7.1	99
136	Evidence of a Spotted Fever-Like Rickettsia and a Potential New Vector from Northeastern Australia. Journal of Medical Entomology, 2005, 42, 918-921.	1.8	16
137	Wolbachia Genomes: Insights into an Intracellular Lifestyle. Current Biology, 2005, 15, R507-R509.	3.9	28
138	Evidence for a Global Wolbachia Replacement in Drosophila melanogaster. Current Biology, 2005, 15, 1428-1433.	3.9	216
139	Distribution, Expression, and Motif Variability of Ankyrin Domain Genes in Wolbachia pipientis. Journal of Bacteriology, 2005, 187, 5136-5145.	2.2	126
140	New names for old strains? Wolbachia wSim is actually wRi. Genome Biology, 2005, 6, 401.	9.6	11
141	Evidence of a Spotted Fever-Like Rickettsia and a Potential New Vector from Northeastern Australia. Journal of Medical Entomology, 2005, 42, 918-921.	1.8	6
142	Phylogenomics of the Reproductive Parasite Wolbachia pipientis wMel: A Streamlined Genome Overrun by Mobile Genetic Elements. PLoS Biology, 2004, 2, e69.	5.6	713
143	Wolbachia Replication and Host Cell Division in Aedes albopictus. Current Microbiology, 2004, 49, 10-12.	2.2	21
144	Wolbachia pipientis: intracellular infection and pathogenesis in Drosophila. Current Opinion in Microbiology, 2004, 7, 67-70.	5.1	94

#	Article	IF	CITATIONS
145	The potential of virulent Wolbachia to modulate disease transmission by insects. Journal of Invertebrate Pathology, 2003, 84, 24-29.	3.2	115
146	Development ofa Physical and Genetic Map of the Virulent Wolbachia Strain w MelPop. Journal of Bacteriology, 2003, 185, 7077-7084.	2.2	30
147	Molecular Phylogeny of <i>Wolbachia</i> Endosymbionts in Southeast Asian Mosquitoes (Diptera:) Tj ETQq1 1 0.	784314 rg 1.8	;BT/Overlock
148	Wolbachia density and virulence attenuation after transfer into a novel host. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2918-2923.	7.1	268
149	<i>Wolbachia</i> Infection in the Coffee Berry Borer (Coleoptera: Scolytidae). Annals of the Entomological Society of America, 2002, 95, 374-378.	2.5	44
150	Characterization of Wolbachia Host Cell Range via the In Vitro Establishment of Infections. Applied and Environmental Microbiology, 2002, 68, 656-660.	3.1	84
151	Wolbachia Infections of Tephritid Fruit Flies: Molecular Evidence for Five Distinct Strains in a Single Host Species. Current Microbiology, 2002, 45, 255-260.	2.2	72
152	Host age effect and expression of cytoplasmic incompatibility in field populations of Wolbachia-superinfected Aedes albopictus. Heredity, 2002, 88, 270-274.	2.6	62
153	Maternal transmission efficiency of Wolbachia superinfections in Aedes albopictus populations in Thailand American Journal of Tropical Medicine and Hygiene, 2002, 66, 103-107.	1.4	65
154	Field prevalence of Wolbachia in the mosquito vector Aedes albopictus American Journal of Tropical Medicine and Hygiene, 2002, 66, 108-111.	1.4	71
155	Prospects for control of African trypanosomiasis by tsetse vector manipulation. Trends in Parasitology, 2001, 17, 29-35.	3.3	74
156	<i>Wolbachia</i> Infections of Phlebotomine Sand Flies (Diptera: Psychodidae). Journal of Medical Entomology, 2001, 38, 237-241.	1.8	63
157	Wolbachia-mediated sperm modification is dependent on the host genotype inDrosophila. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 2565-2570.	2.6	96
158	Determination of Wolbachia Genome Size by Pulsed-Field Gel Electrophoresis. Journal of Bacteriology, 2001, 183, 2219-2225.	2.2	83
159	Prospects for control of African trypanosomiasis by tsetse vector manipulation. Parasitology Today, 2001, 17, 29-35.	3.0	3
160	Wolbachia neither induces nor suppresses transcripts encoding antimicrobial peptides. Insect Molecular Biology, 2000, 9, 635-639.	2.0	130
161	Tissue distribution and prevalence of <i>Wolbachia</i> infections in tsetse flies, <i>Glossina</i> spp Medical and Veterinary Entomology, 2000, 14, 44-50.	1.5	160
162	wsp Gene Sequences from the Wolbachia of Filarial Nematodes. Current Microbiology, 2000, 41, 96-100.	2.2	79

#	Article	IF	CITATIONS
163	<i>Wolbachia</i> Infection and Expression of Cytoplasmic Incompatibility in <i>Armigeres subalbatus</i> (Diptera: Culicidae). Journal of Medical Entomology, 2000, 37, 53-57.	1.8	33
164	Distribution and Diversity of <i>Wolbachia</i> Infections in Southeast Asian Mosquitoes (Diptera:) Tj ETQq0 0 0	rgBT /Ovei 1.8	lock 10 Tf 50 175
165	Francisella-like Endosymbionts of Ticks. Journal of Invertebrate Pathology, 2000, 76, 301-303.	3.2	69
166	Distribution and Diversity of <i>Wolbachia</i> Infections in Southeast Asian Mosquitoes (Diptera: Culicidae). Journal of Medical Entomology, 2000, 37, 340-345.	1.8	81
167	A stable triple Wolbachia infection in Drosophila with nearly additive incompatibility effects. Heredity, 1999, 82, 620-627.	2.6	77
168	Semliki Forest virus as an expression vector in insect cell lines. Insect Molecular Biology, 1999, 8, 409-414.	2.0	3
169	Wolbachia Genomes and the Many Faces of Symbiosis. Parasitology Today, 1999, 15, 428-429.	3.0	38
170	Wolbachia: Why These Bacteria Are Important to Genome Research. Microbial & Comparative Genomics, 1999, 4, 159-159.	0.4	2
171	Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochemistry and Molecular Biology, 1999, 29, 153-160.	2.7	345
172	Evolution of Wolbachia pipientis transmission dynamics in insects. Trends in Microbiology, 1999, 7, 297-302.	7.7	35
173	Gene Organization of the <i>dnaA</i> Region of <i>Wolbachia</i> . Journal of Bacteriology, 1999, 181, 4708-4710.	2.2	2
174	A mosquito densovirus infecting Aedes aegypti and Aedes albopictus from Thailand American Journal of Tropical Medicine and Hygiene, 1999, 61, 612-617.	1.4	60
175	Rescuing Wolbachia have been overlooked⃛. Nature, 1998, 391, 852-853.	27.8	159
176	Analysis of Wolbachia protein synthesis in Drosophila in vivo. Insect Molecular Biology, 1998, 7, 101-105.	2.0	17
177	"Wolbachia" Infections and Arthropod Reproduction. BioScience, 1998, 48, 287-293.	4.9	124
178	Phylogeny and PCR–based classification of Wolbachia strains using wsp gene sequences. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 509-515.	2.6	1,107
179	Cloning and Characterization of a Gene Encoding the Major Surface Protein of the Bacterial Endosymbiont <i>Wolbachia pipientis</i> . Journal of Bacteriology, 1998, 180, 2373-2378.	2.2	593
180	Control of Vector-Borne Disease by Genetic Manipulation of Insect Populations: Technological Requirements and Research Priorities. Australian Journal of Entomology, 1997, 36, 309-317.	1.1	16

#	Article	IF	CITATIONS
181	In vitro cultivation of Wolbachia pipientis in an Aedes albopictus cell line. Insect Molecular Biology, 1997, 6, 33-39.	2.0	165
182	PCR-based detection and identification of insect symbionts. , 1997, , 561-566.		0
183	Wolbachia pipientis: Bacterial Density and Unidirectional Cytoplasmic Incompatibility between Infected Populations of Aedes albopictus. Experimental Parasitology, 1995, 81, 284-291.	1.2	121
184	Insect densoviruses may be widespread in mosquito cell lines. Journal of General Virology, 1995, 76, 2067-2074.	2.9	73
185	Wolbachia pipientis: Symbiont or parasite?. Parasitology Today, 1995, 11, 168-169.	3.0	20
186	Wolbachia superinfections and the expression of cytoplasmic incompatibility. Proceedings of the Royal Society B: Biological Sciences, 1995, 261, 325-330.	2.6	237
187	Wolbachia infections and the expression of cytoplasmic incompatibility in Drosophila sechellia and D. mauritiana Genetics, 1995, 140, 1307-1317.	2.9	165
188	Replacement of the natural Wolbachia symbiont of Drosophila simulans with a mosquito counterpart. Nature, 1994, 367, 453-455.	27.8	172
189	Phylogenetically distant symbiotic microorganisms reside in Glossina midgut and ovary tissues. Medical and Veterinary Entomology, 1993, 7, 377-383.	1.5	136
190	Genetic transformation and phylogeny of bacterial symbionts from tsetse. Insect Molecular Biology, 1993, 1, 123-131.	2.0	97
191	Interspecific and intraspecific horizontal transfer of Wolbachia in Drosophila. Science, 1993, 260, 1796-1799.	12.6	333
192	Modification of arthropod vector competence via symbiotic bacteria. Parasitology Today, 1993, 9, 179-183.	3.0	143
193	16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 2699-2702.	7.1	1,056
194	Crossing type variability associated with cytoplasmic incompatibility in Australian populations of the mosquito Culex quinquefasciatus Say. Medical and Veterinary Entomology, 1992, 6, 209-216.	1.5	32
195	Cytoplasmic incompatibility in Drosophila populations: Influence of assortative mating on symbiont distribution. Journal of Invertebrate Pathology, 1991, 58, 436-443.	3.2	9
196	Bidirectional incompatibility between conspecific populations of Drosophila simulans. Nature, 1990, 348, 178-180.	27.8	390
197	Cytoplasmic symbionts in Tribolium confusum. Journal of Invertebrate Pathology, 1989, 53, 132-134.	3.2	34
198	SOCIAL BEHAVIOUR AND ITS RELATIONSHIP TO FIELD DISTRIBUTION IN PANESTHIA CRIBRATA SAUSSURE (BLATTODEA: BLABERIDAE). Australian Journal of Entomology, 1987, 26, 313-321.	1.1	18

#	Article	IF	CITATIONS
199	Environmental factors influence the local establishment of Wolbachia in Aedes aegypti mosquitoes in two small communities in central Vietnam. Gates Open Research, 0, 5, 147.	1.1	26
200	Scaled deployment of Wolbachia to protect the community from Aedes transmitted arboviruses. Gates Open Research, 0, 2, 36.	1.1	29
201	The impact of city-wide deployment of Wolbachia-carrying mosquitoes on arboviral disease incidence in MedellĀn and Bello, Colombia: study protocol for an interrupted time-series analysis and a test-negative design study. F1000Research, 0, 8, 1327.	1.6	6
202	Environmental factors influence the local establishment of Wolbachia in Aedes aegypti mosquitoes in two small communities in central Vietnam. Gates Open Research, 0, 5, 147.	1.1	9