Hassan Albadawi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/437385/publications.pdf

Version: 2024-02-01

63 papers 2,300 citations

236925 25 h-index 233421 45 g-index

64 all docs

64
docs citations

times ranked

64

3950 citing authors

#	Article	IF	Citations
1	Silk Embolic Material for Catheterâ€Directed Endovascular Drug Delivery. Advanced Materials, 2022, 34, e2106865.	21.0	19
2	Silk Embolic Material for Catheterâ€Directed Endovascular Drug Delivery (Adv. Mater. 2/2022). Advanced Materials, 2022, 34, .	21.0	0
3	Treatment of Ruptured and Nonruptured Aneurysms Using a Semisolid Iodinated Embolic Agent. Advanced Materials, 2022, 34, e2108266.	21.0	3
4	Treatment of Ruptured and Nonruptured Aneurysms Using a Semisolid Iodinated Embolic Agent (Adv.) Tj ETQqC	0 0 rgBT /	Overlock 10 T
5	Robotic Devices for Minimally Invasive Endovascular Interventions: A New Dawn for Interventional Radiology. Advanced Intelligent Systems, 2021, 3, 2000181.	6.1	18
6	Robotic Devices for Minimally Invasive Endovascular Interventions: A New Dawn for Interventional Radiology. Advanced Intelligent Systems, 2021, 3, 2170021.	6.1	1
7	Percutaneous liquid ablation agent for tumor treatment and drug delivery. Science Translational Medicine, 2021, 13, .	12.4	25
8	Endovascular interventions in the management of acute extremity trauma: a narrative review. Annals of Translational Medicine, 2021, 9, 1197-1197.	1.7	3
9	Emerging approaches to pre-hospital hemorrhage control: a narrative review. Annals of Translational Medicine, 2021, 9, 1192-1192.	1.7	21
10	Applications of 3D Bioprinting in Tissue Engineering and Regenerative Medicine. Journal of Clinical Medicine, 2021, 10, 4966.	2.4	32
11	Nanocomposite Hydrogels: Bioactiveâ€Tissueâ€Derived Nanocomposite Hydrogel for Permanent Arterial Embolization and Enhanced Vascular Healing (Adv. Mater. 33/2020). Advanced Materials, 2020, 32, 2070248.	21.0	O
12	Bloodâ€Derived Biomaterial for Catheterâ€Directed Arterial Embolization. Advanced Materials, 2020, 32, e2005603.	21.0	12
13	Bioactiveâ€Tissueâ€Derived Nanocomposite Hydrogel for Permanent Arterial Embolization and Enhanced Vascular Healing. Advanced Materials, 2020, 32, e2002611.	21.0	34
14	Arterial Embolization: Bloodâ€Derived Biomaterial for Catheterâ€Directed Arterial Embolization (Adv.) Tj ETQq0	0 0 rgBT /0 2 f.0	Overlock 10 Ti
15	Advances in Biomaterials and Technologies for Vascular Embolization. Advanced Materials, 2019, 31, e1901071.	21.0	133
16	Systemically Administered Hemostatic Nanoparticles for Identification and Treatment of Internal Bleeding. ACS Biomaterials Science and Engineering, 2019, 5, 2563-2576.	5.2	21
17	Irreversible Electroporation in Liver Cancers and Whole Organ Engineering. Journal of Clinical Medicine, 2019, 8, 22.	2.4	14
18	Radiogenomics and Radiomics in Liver Cancers. Diagnostics, 2019, 9, 4.	2.6	59

#	Article	IF	Citations
19	History and Evolution of Yttrium-90 Radioembolization for Hepatocellular Carcinoma. Journal of Clinical Medicine, 2019, 8, 55.	2.4	73
20	Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing. Nature Biomedical Engineering, 2018, 2, 165-172.	22.5	108
21	Skin regeneration with all accessory organs following ablation with irreversible electroporation. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 98-113.	2.7	22
22	Three-dimensional (3D) printing and its applications for aortic diseases. Cardiovascular Diagnosis and Therapy, 2018, 8, S19-S25.	1.7	27
23	Quiescent-Interval Single-Shot Magnetic Resonance Angiography. Diagnostics, 2018, 8, 84.	2.6	6
24	Liquid Biopsy in Gastrointestinal Cancers. Diagnostics, 2018, 8, 75.	2.6	11
25	Rejuvenation of aged rat skin with pulsed electric fields. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 2309-2318.	2.7	8
26	Multi-Detector Computed Tomography Imaging Techniques in Arterial Injuries. Journal of Clinical Medicine, 2018, 7, 88.	2.4	5
27	Degree of Left Renal Vein Compression Predicts Nutcracker Syndrome. Journal of Clinical Medicine, 2018, 7, 107.	2.4	24
28	The Use of Transarterial Approaches in Peripheral Arteriovenous Malformations (AVMs). Journal of Clinical Medicine, 2018, 7, 109.	2.4	16
29	Social Medicine: Twitter in Healthcare. Journal of Clinical Medicine, 2018, 7, 121.	2.4	228
30	Spinal Cord Inflammation: Molecular Imaging after Thoracic Aortic Ischemia Reperfusion Injury. Radiology, 2017, 282, 202-211.	7.3	15
31	Animal models of venous thrombosis. Cardiovascular Diagnosis and Therapy, 2017, 7, S197-S206.	1.7	36
32	Using Na \tilde{A} -ve Bayesian Analysis to Determine Imaging Characteristics of KRAS Mutations in Metastatic Colon Cancer. Diagnostics, 2017, 7, 50.	2.6	10
33	Oncolytic virus delivery: from nano-pharmacodynamics to enhanced oncolytic effect. Oncolytic Virotherapy, 2017, Volume 6, 39-49.	6.0	32
34	Below-knee deep vein thrombosis (DVT): diagnostic and treatment patterns. Cardiovascular Diagnosis and Therapy, 2017, 7, S134-S139.	1.7	20
35	Deep vein thrombosis: pathogenesis, diagnosis, and medical management. Cardiovascular Diagnosis and Therapy, 2017, 7, S276-S284.	1.7	173
36	Catheter-directed thrombolysis of deep vein thrombosis: literature review and practice considerations. Cardiovascular Diagnosis and Therapy, 2017, 7, S228-S237.	1.7	81

#	Article	IF	Citations
37	Paget-Schroetter syndrome: treatment of venous thrombosis and outcomes. Cardiovascular Diagnosis and Therapy, 2017, 7, S285-S290.	1.7	28
38	Hemostasis and nanotechnology. Cardiovascular Diagnosis and Therapy, 2017, 7, S267-S275.	1.7	33
39	Neutrophil extracellular traps are increased in cancer patients but does not associate with venous thrombosis. Cardiovascular Diagnosis and Therapy, 2017, 7, S140-S149.	1.7	69
40	Bioengineered in vitro models of thrombosis: methods and techniques. Cardiovascular Diagnosis and Therapy, 2017, 7, S329-S335.	1.7	19
41	Elastography techniques in the evaluation of deep vein thrombosis. Cardiovascular Diagnosis and Therapy, 2017, 7, S238-S245.	1.7	16
42	Anti-fouling strategies for central venous catheters. Cardiovascular Diagnosis and Therapy, 2017, 7, S246-S257.	1.7	26
43	Can thrombus age guide thrombolytic therapy?. Cardiovascular Diagnosis and Therapy, 2017, 7, S186-S196.	1.7	58
44	Statins as a preventative therapy for venous thromboembolism. Cardiovascular Diagnosis and Therapy, 2017, 7, S207-S218.	1.7	17
45	Models of Ischemic and Vascular Wounds. Frontiers in Nanobiomedical Research, 2017, , 99-125.	0.1	0
46	Bioprinted thrombosis-on-a-chip. Lab on A Chip, 2016, 16, 4097-4105.	6.0	183
47	Insulin Downregulates the Transcriptional Coregulator CITED2, an Inhibitor of Proangiogenic Function in Endothelial Cells. Diabetes, 2016, 65, 3680-3690.	0.6	18
48	An injectable shear-thinning biomaterial for endovascular embolization. Science Translational Medicine, 2016, 8, 365ra156.	12.4	147
49	Revascularization and muscle adaptation to limb demand ischemia in diet-induced obese mice. Journal of Surgical Research, 2016, 205, 49-58.	1.6	2
50	Extracellular matrix remodelling in response to venous hypertension: proteomics of human varicose veins. Cardiovascular Research, 2016, 110, 419-430.	3.8	56
51	Effect of DNase I treatment and neutrophil depletion on acute limb ischemia-reperfusion injury in mice. Journal of Vascular Surgery, 2016, 64, 484-493.	1.1	40
52	Skin Rejuvenation with Non-Invasive Pulsed Electric Fields. Scientific Reports, 2015, 5, 10187.	3.3	45
53	Effect of limb demand ischemia on autophagy and morphology in mice. Journal of Surgical Research, 2015, 198, 515-524.	1.6	3
54	Hind limb ischemia–reperfusion injury in diet-induced obese mice. Journal of Surgical Research, 2014, 190, 683-691.	1.6	26

#	Article	IF	CITATIONS
55	Extracellular Traps in Lipid-Rich Lesions of Carotid Atherosclerotic Plaques: Implications for Lipoprotein Retention and Lesion Progression. Journal of Vascular and Interventional Radiology, 2014, 25, 631-634.	0.5	6
56	Differential effect of zoledronic acid on human vascular smooth muscle cells. Journal of Surgical Research, 2013, 182, 339-346.	1.6	10
57	Divergent systemic and local inflammatory response to hind limb demand ischemia in wild-type and ApoE–/– mice. Journal of Surgical Research, 2013, 183, 952-962.	1.6	9
58	Reduced hind limb ischemia-reperfusion injury in Toll-like receptor-4 mutant mice is associated with decreased neutrophil extracellular traps. Journal of Vascular Surgery, 2013, 58, 1627-1636.	1.1	54
59	Detection of Extracellular Genomic DNA Scaffold in Human Thrombus: Implications for the Use of Deoxyribonuclease Enzymes in Thrombolysis. Journal of Vascular and Interventional Radiology, 2012, 23, 712-718.	0.5	47
60	A Functional Murine Model of Hindlimb Demand Ischemia. Annals of Vascular Surgery, 2010, 24, 532-537.	0.9	13
61	A novel model of acute murine hindlimb ischemia. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H830-H837.	3.2	68
62	Human microvascular endothelial synthesis of interleukin-8 during in vitro ischemia and reperfusion. Journal of Cellular Biochemistry, 2007, 100, 412-420.	2.6	4
63	Role of Poly(ADP-Ribose) Polymerase during Vascular Reconstruction. Vascular, 2006, 14, 362-365.	0.9	6