
Rebecca A Montgomery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4373817/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Canopy spectral reflectance detects oak wilt at the landscape scale using phylogenetic discrimination. Remote Sensing of Environment, 2022, 273, 112961.	11.0	24
2	Physiological responses to light explain competition and facilitation in a tree diversity experiment. Journal of Ecology, 2021, 109, 2000-2018.	4.0	23
3	Disease and fire interact to influence transitions between savanna–forest ecosystems over a multiâ€decadal experiment. Ecology Letters, 2021, 24, 1007-1017.	6.4	11
4	Assessing the relevant time frame for temperature acclimation of leaf dark respiration: A test with 10 boreal and temperate species. Global Change Biology, 2021, 27, 2945-2958.	9.5	8
5	Seven Ways a Warming Climate Can Kill the Southern Boreal Forest. Forests, 2021, 12, 560.	2.1	19
6	Surprising lack of sensitivity of biochemical limitation of photosynthesis of nine tree species to openâ€eir experimental warming and reduced rainfall in a southern boreal forest. Global Change Biology, 2020, 26, 746-759.	9.5	26
7	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
8	Spectral differentiation of oak wilt from foliar fungal disease and drought is correlated with physiological changes. Tree Physiology, 2020, 40, 377-390.	3.1	42
9	Phenological responses of temperate and boreal trees to warming depend on ambient spring temperatures, leaf habit, and geographic range. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10397-10405.	7.1	65
10	Vascular plant species response to warming and elevated carbon dioxide in a boreal peatland. Environmental Research Letters, 2020, 15, 124066.	5.2	32
11	Characterizing Boreal Peatland Plant Composition and Species Diversity with Hyperspectral Remote Sensing. Remote Sensing, 2019, 11, 1685.	4.0	27
12	The role of simulated spring water stress in interactions between eastern larch and larch casebearer. Arthropod-Plant Interactions, 2019, 13, 621-633.	1.1	8
13	Neighborhood diversity simultaneously increased and decreased susceptibility to contrasting herbivores in an early stage forest diversity experiment. Journal of Ecology, 2019, 107, 1492-1505.	4.0	22
14	The response of boreal peatland community composition and <scp>NDVI</scp> to hydrologic change, warming, and elevated carbon dioxide. Global Change Biology, 2019, 25, 93-107.	9.5	72
15	Comparing forest structure and biodiversity on private and public land: secondary tropical dry forests in Costa Rica. Biotropica, 2018, 50, 510-519.	1.6	8
16	Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature, 2018, 562, 263-267.	27.8	248
17	Combinations of Abiotic Factors Differentially Alter Production of Plant Secondary Metabolites in Five Woody Plant Species in the Boreal-Temperate Transition Zone. Frontiers in Plant Science, 2018, 9, 1257.	3.6	74
18	Experimental warming advances phenology of groundlayer plants at the borealâ€ŧemperate forest ecotone. American Journal of Botany, 2018, 105, 851-861.	1.7	25

#	Article	IF	CITATIONS
19	Food webs obscure the strength of plant diversity effects on primary productivity. Ecology Letters, 2017, 20, 505-512.	6.4	73
20	Effects of artificial warming during quiescence on budbreak and growth of white spruce, Picea glauca. Canadian Journal of Forest Research, 2017, 47, 1538-1545.	1.7	2
21	Species richness and traits predict overyielding in stem growth in an earlyâ€successional tree diversity experiment. Ecology, 2017, 98, 2601-2614.	3.2	68
22	Ectomycorrhizal fungal response to warming is linked to poor host performance at the borealâ€ŧemperate ecotone. Global Change Biology, 2017, 23, 1598-1609.	9.5	100
23	Seasonal Variation in the NDVI–Species Richness Relationship in a Prairie Grassland Experiment (Cedar) Tj ETQq	1 1 0.7843 4.0	814 rgBT / <mark>O</mark>
24	ls it getting hot in here? Adjustment of hydraulic parameters in six boreal and temperate tree species after 5Âyears of warming. Global Change Biology, 2016, 22, 4124-4133.	9.5	17
25	Boreal and temperate trees show strong acclimation of respiration to warming. Nature, 2016, 531, 633-636.	27.8	212
26	Allometry of early growth in selected and wild sources of white spruce, Picea glauca (Moench) Voss. New Forests, 2016, 47, 131-141.	1.7	3
27	Foodâ€web composition and plant diversity control foliar nutrient content and stoichiometry. Journal of Ecology, 2015, 103, 1432-1441.	4.0	36
28	Acclimation of photosynthetic temperature optima of temperate and boreal tree species in response to experimental forest warming. Global Change Biology, 2015, 21, 1342-1357.	9.5	108
29	Design and performance of combined infrared canopy and belowground warming in the B4Warm <scp>ED</scp> (Boreal Forest Warming at an Ecotone in Danger) experiment. Global Change Biology, 2015, 21, 2334-2348.	9.5	65
30	Geographic range predicts photosynthetic and growth response to warming in co-occurring treeAspecies. Nature Climate Change, 2015, 5, 148-152.	18.8	179
31	Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant, Cell and Environment, 2015, 38, 1725-1736.	5.7	274
32	Responses of two understory herbs, <i>Maianthemum canadense</i> and <i>Eurybia macrophylla</i> , to experimental forest warming: Early emergence is the key to enhanced reproductive output. American Journal of Botany, 2015, 102, 1610-1624.	1.7	31
33	Lightâ€induced plasticity in leaf hydraulics, venation, anatomy, and gas exchange in ecologically diverse Hawaiian lobeliads. New Phytologist, 2015, 207, 43-58.	7.3	77
34	Biomass growth response to spatial pattern of variable-retention harvesting in a northern Minnesota pine ecosystem. , 2014, 24, 2078-2088.		20
35	Species Richness, Forest Structure, and Functional Diversity During Succession in the New Guinea Lowlands. Biotropica, 2014, 46, 538-548.	1.6	69
36	Simulated climate warming alters phenological synchrony between an outbreak insect herbivore and host trees. Oecologia, 2014, 175, 1041-1049.	2.0	92

REBECCA A MONTGOMERY

#	Article	IF	CITATIONS
37	Common-garden studies on adaptive radiation of photosynthetic physiology among Hawaiian lobeliads. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132944.	2.6	27
38	Harvest-Created Canopy Gaps Increase Species and Functional Trait Diversity of the Forest Ground-Layer Community. Forest Science, 2014, 60, 335-344.	1.0	43
39	New cohort growth and survival in variable retention harvests of a pine ecosystem in Minnesota, USA. Forest Ecology and Management, 2013, 310, 327-335.	3.2	18
40	Canopy gap size influences niche partitioning of the ground-layer plant community in a northern temperate forest. Journal of Plant Ecology, 2013, 6, 101-112.	2.3	62
41	Seeing the forest for the heterogeneous trees: standâ€scale resource distributions emerge from treeâ€scale structure. Ecological Applications, 2012, 22, 1578-1588.	3.8	60
42	Do deer and shrubs override canopy gap size effects on growth and survival of yellow birch, northern red oak, eastern white pine, and eastern hemlock seedlings?. Forest Ecology and Management, 2012, 267, 134-143.	3.2	93
43	Frequency and timing of stem removal influence Corylus americana resprout vigor in oak savanna. Forest Ecology and Management, 2011, 261, 136-142.	3.2	15
44	Poor recruitment is changing the structure and species composition of an old-growth hemlock-hardwood forest. Forest Ecology and Management, 2011, 261, 1998-2006.	3.2	42
45	Biological and environmental controls on tree transpiration in a suburban landscape. Journal of Geophysical Research, 2010, 115, .	3.3	69
46	Untangling positive and negative biotic interactions: views from above and below ground in a forest ecosystem. Ecology, 2010, 91, 3641-3655.	3.2	90
47	Decomposition in tropical forests: a panâ€ŧropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. Journal of Ecology, 2009, 97, 801-811.	4.0	256
48	Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: dynamic photosynthetic responses. Oecologia, 2008, 155, 455-467.	2.0	69
49	Why are evergreen leaves so contrary about shade?. Trends in Ecology and Evolution, 2008, 23, 299-303.	8.7	193
50	Leaf phenology in relation to canopy closure in southern Appalachian trees. American Journal of Botany, 2008, 95, 1395-1407.	1.7	63
51	Photoprotection of PSII in Hawaiian lobeliads from diverse light environments. Functional Plant Biology, 2008, 35, 595.	2.1	10
52	Physiological and phenological responses of oak seedlings to oak forest soil in the absence of trees. Tree Physiology, 2007, 27, 133-140.	3.1	25
53	Variation in Small Sapling Density, Understory Cover, and Resource Availability in Four Neotropical Forests1. Biotropica, 2004, 36, 40.	1.6	0
54	Effects of Understory Foliage on Patterns of Light Attenuation near the Forest Floor1. Biotropica, 2004, 36, 33.	1.6	0

REBECCA A MONTGOMERY

#	Article	IF	CITATIONS
55	Relative importance of photosynthetic physiology and biomass allocation for tree seedling growth across a broad light gradient. Tree Physiology, 2004, 24, 155-167.	3.1	62
56	Effects of Understory Foliage on Patterns of Light Attenuation near the Forest Floor. Biotropica, 2004, 36, 33-39.	1.6	59
57	Variation in Small Sapling Density, Understory Cover, and Resource Availability in Four Neotropical Forests. Biotropica, 2004, 36, 40-51.	1.6	61
58	Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: light regimes, static light responses, and wholeâ€plant compensation points. American Journal of Botany, 2004, 91, 228-246.	1.7	148
59	Sexes show contrasting patterns of leaf and crown carbon gain in a dioecious rainforest shrub. American Journal of Botany, 2003, 90, 347-355.	1.7	43
60	EFFECTS OF LIGHT, ALIEN GRASS, AND NATIVE SPECIES ADDITIONS ON HAWAIIAN DRY FOREST RESTORATION. , 2002, 12, 1595-1610.		107
61	Light gradient partitioning by tropical tree seedlings in the absence of canopy gaps. Oecologia, 2002, 131, 165-174.	2.0	229
62	Effects of Light, Alien Grass, and Native Species Additions on Hawaiian Dry Forest Restoration. , 2002, 12, 1595.		2
63	FOREST STRUCTURE, CANOPY ARCHITECTURE, AND LIGHT TRANSMITTANCE IN TROPICAL WET FORESTS. Ecology, 2001, 82, 2707-2718.	3.2	249
64	Forest Structure, Canopy Architecture, and Light Transmittance in Tropical Wet Forests. Ecology, 2001, 82, 2707.	3.2	15