
Rebecca A Montgomery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4373817/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
2	Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant, Cell and Environment, 2015, 38, 1725-1736.	5.7	274
3	Decomposition in tropical forests: a panâ€tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. Journal of Ecology, 2009, 97, 801-811.	4.0	256
4	FOREST STRUCTURE, CANOPY ARCHITECTURE, AND LIGHT TRANSMITTANCE IN TROPICAL WET FORESTS. Ecology, 2001, 82, 2707-2718.	3.2	249
5	Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature, 2018, 562, 263-267.	27.8	248
6	Light gradient partitioning by tropical tree seedlings in the absence of canopy gaps. Oecologia, 2002, 131, 165-174.	2.0	229
7	Boreal and temperate trees show strong acclimation of respiration to warming. Nature, 2016, 531, 633-636.	27.8	212
8	Why are evergreen leaves so contrary about shade?. Trends in Ecology and Evolution, 2008, 23, 299-303.	8.7	193
9	Geographic range predicts photosynthetic and growth response to warming in co-occurring treeAspecies. Nature Climate Change, 2015, 5, 148-152.	18.8	179
10	Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: light regimes, static light responses, and wholeâ€plant compensation points. American Journal of Botany, 2004, 91, 228-246.	1.7	148
11	Acclimation of photosynthetic temperature optima of temperate and boreal tree species in response to experimental forest warming. Global Change Biology, 2015, 21, 1342-1357.	9.5	108
12	EFFECTS OF LIGHT, ALIEN GRASS, AND NATIVE SPECIES ADDITIONS ON HAWAIIAN DRY FOREST RESTORATION. , 2002, 12, 1595-1610.		107
13	Ectomycorrhizal fungal response to warming is linked to poor host performance at the borealâ€ŧemperate ecotone. Global Change Biology, 2017, 23, 1598-1609.	9.5	100
14	Do deer and shrubs override canopy gap size effects on growth and survival of yellow birch, northern red oak, eastern white pine, and eastern hemlock seedlings?. Forest Ecology and Management, 2012, 267, 134-143.	3.2	93
15	Simulated climate warming alters phenological synchrony between an outbreak insect herbivore and host trees. Oecologia, 2014, 175, 1041-1049.	2.0	92
16	Untangling positive and negative biotic interactions: views from above and below ground in a forest ecosystem. Ecology, 2010, 91, 3641-3655.	3.2	90
17	Lightâ€induced plasticity in leaf hydraulics, venation, anatomy, and gas exchange in ecologically diverse Hawaiian lobeliads. New Phytologist, 2015, 207, 43-58.	7.3	77
18	Combinations of Abiotic Factors Differentially Alter Production of Plant Secondary Metabolites in Five Woody Plant Species in the Boreal-Temperate Transition Zone. Frontiers in Plant Science, 2018, 9, 1257.	3.6	74

#	Article	IF	CITATIONS
19	Food webs obscure the strength of plant diversity effects on primary productivity. Ecology Letters, 2017, 20, 505-512.	6.4	73
20	The response of boreal peatland community composition and <scp>NDVI</scp> to hydrologic change, warming, and elevated carbon dioxide. Global Change Biology, 2019, 25, 93-107.	9.5	72
21	Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: dynamic photosynthetic responses. Oecologia, 2008, 155, 455-467.	2.0	69
22	Biological and environmental controls on tree transpiration in a suburban landscape. Journal of Geophysical Research, 2010, 115, .	3.3	69
23	Species Richness, Forest Structure, and Functional Diversity During Succession in the New Guinea Lowlands. Biotropica, 2014, 46, 538-548.	1.6	69
24	Species richness and traits predict overyielding in stem growth in an earlyâ€successional tree diversity experiment. Ecology, 2017, 98, 2601-2614.	3.2	68
25	Design and performance of combined infrared canopy and belowground warming in the B4Warm <scp>ED</scp> (Boreal Forest Warming at an Ecotone in Danger) experiment. Global Change Biology, 2015, 21, 2334-2348.	9.5	65
26	Seasonal Variation in the NDVI–Species Richness Relationship in a Prairie Grassland Experiment (Cedar) Tj ETQo	0.0 0 rgB ⁻ 4.0	[/Qverlock 1
27	Phenological responses of temperate and boreal trees to warming depend on ambient spring temperatures, leaf habit, and geographic range. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10397-10405.	7.1	65
28	Leaf phenology in relation to canopy closure in southern Appalachian trees. American Journal of Botany, 2008, 95, 1395-1407.	1.7	63
29	Relative importance of photosynthetic physiology and biomass allocation for tree seedling growth across a broad light gradient. Tree Physiology, 2004, 24, 155-167.	3.1	62
30	Canopy gap size influences niche partitioning of the ground-layer plant community in a northern temperate forest. Journal of Plant Ecology, 2013, 6, 101-112.	2.3	62
31	Variation in Small Sapling Density, Understory Cover, and Resource Availability in Four Neotropical Forests. Biotropica, 2004, 36, 40-51.	1.6	61
32	Seeing the forest for the heterogeneous trees: standâ€scale resource distributions emerge from treeâ€scale structure. Ecological Applications, 2012, 22, 1578-1588.	3.8	60
33	Effects of Understory Foliage on Patterns of Light Attenuation near the Forest Floor. Biotropica, 2004, 36, 33-39.	1.6	59
34	Sexes show contrasting patterns of leaf and crown carbon gain in a dioecious rainforest shrub. American Journal of Botany, 2003, 90, 347-355.	1.7	43
35	Harvest-Created Canopy Gaps Increase Species and Functional Trait Diversity of the Forest Ground-Layer Community. Forest Science, 2014, 60, 335-344.	1.0	43
36	Poor recruitment is changing the structure and species composition of an old-growth hemlock-hardwood forest. Forest Ecology and Management, 2011, 261, 1998-2006.	3.2	42

REBECCA A MONTGOMERY

#	Article	IF	CITATIONS
37	Spectral differentiation of oak wilt from foliar fungal disease and drought is correlated with physiological changes. Tree Physiology, 2020, 40, 377-390.	3.1	42
38	Foodâ€web composition and plant diversity control foliar nutrient content and stoichiometry. Journal of Ecology, 2015, 103, 1432-1441.	4.0	36
39	Vascular plant species response to warming and elevated carbon dioxide in a boreal peatland. Environmental Research Letters, 2020, 15, 124066.	5.2	32
40	Responses of two understory herbs, <i>Maianthemum canadense</i> and <i>Eurybia macrophylla</i> , to experimental forest warming: Early emergence is the key to enhanced reproductive output. American Journal of Botany, 2015, 102, 1610-1624.	1.7	31
41	Common-garden studies on adaptive radiation of photosynthetic physiology among Hawaiian lobeliads. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132944.	2.6	27
42	Characterizing Boreal Peatland Plant Composition and Species Diversity with Hyperspectral Remote Sensing, 2019, 11, 1685.	4.0	27
43	Surprising lack of sensitivity of biochemical limitation of photosynthesis of nine tree species to openâ€∎ir experimental warming and reduced rainfall in a southern boreal forest. Global Change Biology, 2020, 26, 746-759.	9.5	26
44	Physiological and phenological responses of oak seedlings to oak forest soil in the absence of trees. Tree Physiology, 2007, 27, 133-140.	3.1	25
45	Experimental warming advances phenology of groundlayer plants at the borealâ€ŧemperate forest ecotone. American Journal of Botany, 2018, 105, 851-861.	1.7	25
46	Canopy spectral reflectance detects oak wilt at the landscape scale using phylogenetic discrimination. Remote Sensing of Environment, 2022, 273, 112961.	11.0	24
47	Physiological responses to light explain competition and facilitation in a tree diversity experiment. Journal of Ecology, 2021, 109, 2000-2018.	4.0	23
48	Neighborhood diversity simultaneously increased and decreased susceptibility to contrasting herbivores in an early stage forest diversity experiment. Journal of Ecology, 2019, 107, 1492-1505.	4.0	22
49	Biomass growth response to spatial pattern of variable-retention harvesting in a northern Minnesota pine ecosystem. , 2014, 24, 2078-2088.		20
50	Seven Ways a Warming Climate Can Kill the Southern Boreal Forest. Forests, 2021, 12, 560.	2.1	19
51	New cohort growth and survival in variable retention harvests of a pine ecosystem in Minnesota, USA. Forest Ecology and Management, 2013, 310, 327-335.	3.2	18
52	ls it getting hot in here? Adjustment of hydraulic parameters in six boreal and temperate tree species after 5Âyears of warming. Global Change Biology, 2016, 22, 4124-4133.	9.5	17
53	Frequency and timing of stem removal influence Corylus americana resprout vigor in oak savanna. Forest Ecology and Management, 2011, 261, 136-142.	3.2	15
54	Forest Structure, Canopy Architecture, and Light Transmittance in Tropical Wet Forests. Ecology, 2001, 82, 2707.	3.2	15

REBECCA A MONTGOMERY

#	Article	IF	CITATIONS
55	Disease and fire interact to influence transitions between savanna–forest ecosystems over a multiâ€decadal experiment. Ecology Letters, 2021, 24, 1007-1017.	6.4	11
56	Photoprotection of PSII in Hawaiian lobeliads from diverse light environments. Functional Plant Biology, 2008, 35, 595.	2.1	10
57	Comparing forest structure and biodiversity on private and public land: secondary tropical dry forests in Costa Rica. Biotropica, 2018, 50, 510-519.	1.6	8
58	The role of simulated spring water stress in interactions between eastern larch and larch casebearer. Arthropod-Plant Interactions, 2019, 13, 621-633.	1.1	8
59	Assessing the relevant time frame for temperature acclimation of leaf dark respiration: A test with 10 boreal and temperate species. Global Change Biology, 2021, 27, 2945-2958.	9.5	8
60	Allometry of early growth in selected and wild sources of white spruce, Picea glauca (Moench) Voss. New Forests, 2016, 47, 131-141.	1.7	3
61	Effects of artificial warming during quiescence on budbreak and growth of white spruce, Picea glauca. Canadian Journal of Forest Research, 2017, 47, 1538-1545.	1.7	2
62	Effects of Light, Alien Grass, and Native Species Additions on Hawaiian Dry Forest Restoration. , 2002, 12, 1595.		2
63	Variation in Small Sapling Density, Understory Cover, and Resource Availability in Four Neotropical Forests1. Biotropica, 2004, 36, 40.	1.6	0
64	Effects of Understory Foliage on Patterns of Light Attenuation near the Forest Floor1. Biotropica, 2004, 36, 33.	1.6	0